Chris@1187
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
Chris@1187
|
2
|
Chris@1187
|
3 /*
|
Chris@1187
|
4 Sonic Visualiser
|
Chris@1187
|
5 An audio file viewer and annotation editor.
|
Chris@1187
|
6 Centre for Digital Music, Queen Mary, University of London.
|
Chris@1188
|
7 This file copyright 2006-2016 Chris Cannam and QMUL.
|
Chris@1187
|
8
|
Chris@1187
|
9 This program is free software; you can redistribute it and/or
|
Chris@1187
|
10 modify it under the terms of the GNU General Public License as
|
Chris@1187
|
11 published by the Free Software Foundation; either version 2 of the
|
Chris@1187
|
12 License, or (at your option) any later version. See the file
|
Chris@1187
|
13 COPYING included with this distribution for more information.
|
Chris@1187
|
14 */
|
Chris@1187
|
15
|
Chris@1187
|
16 #ifndef COLUMN_OP_H
|
Chris@1187
|
17 #define COLUMN_OP_H
|
Chris@1187
|
18
|
Chris@1187
|
19 #include "BaseTypes.h"
|
Chris@1187
|
20
|
Chris@1187
|
21 #include <cmath>
|
Chris@1187
|
22
|
Chris@1190
|
23 /**
|
Chris@1193
|
24 * Display normalization types for columns in e.g. grid plots.
|
Chris@1193
|
25 *
|
Chris@1193
|
26 * Max1 means to normalize to max value = 1.0.
|
Chris@1193
|
27 * Sum1 means to normalize to sum of values = 1.0.
|
Chris@1193
|
28 *
|
Chris@1193
|
29 * Hybrid means normalize to max = 1.0 and then multiply by
|
Chris@1193
|
30 * log10 of the max value, to retain some difference between
|
Chris@1193
|
31 * levels of neighbouring columns.
|
Chris@1193
|
32 *
|
Chris@1193
|
33 * Area normalization is handled separately.
|
Chris@1193
|
34 */
|
Chris@1193
|
35 enum class ColumnNormalization {
|
Chris@1193
|
36 None,
|
Chris@1193
|
37 Max1,
|
Chris@1193
|
38 Sum1,
|
Chris@1193
|
39 Hybrid
|
Chris@1193
|
40 };
|
Chris@1193
|
41
|
Chris@1193
|
42 /**
|
Chris@1190
|
43 * Class containing static functions for simple operations on data
|
Chris@1190
|
44 * columns, for use by display layers.
|
Chris@1190
|
45 */
|
Chris@1187
|
46 class ColumnOp
|
Chris@1187
|
47 {
|
Chris@1187
|
48 public:
|
Chris@1190
|
49 /**
|
Chris@1190
|
50 * Column type.
|
Chris@1190
|
51 */
|
Chris@1187
|
52 typedef std::vector<float> Column;
|
Chris@1187
|
53
|
Chris@1190
|
54 /**
|
Chris@1195
|
55 * Scale the given column using the given gain multiplier.
|
Chris@1195
|
56 */
|
Chris@1197
|
57 static Column applyGain(const Column &in, double gain) {
|
Chris@1195
|
58
|
Chris@1197
|
59 if (gain == 1.0) {
|
Chris@1195
|
60 return in;
|
Chris@1195
|
61 }
|
Chris@1195
|
62 Column out;
|
Chris@1195
|
63 out.reserve(in.size());
|
Chris@1195
|
64 for (auto v: in) {
|
Chris@1197
|
65 out.push_back(float(v * gain));
|
Chris@1195
|
66 }
|
Chris@1195
|
67 return out;
|
Chris@1195
|
68 }
|
Chris@1195
|
69
|
Chris@1195
|
70 /**
|
Chris@1190
|
71 * Scale an FFT output by half the FFT size.
|
Chris@1190
|
72 */
|
Chris@1187
|
73 static Column fftScale(const Column &in, int fftSize) {
|
Chris@1197
|
74 return applyGain(in, 2.0 / fftSize);
|
Chris@1187
|
75 }
|
Chris@1187
|
76
|
Chris@1190
|
77 /**
|
Chris@1190
|
78 * Determine whether an index points to a local peak.
|
Chris@1190
|
79 */
|
Chris@1187
|
80 static bool isPeak(const Column &in, int ix) {
|
Chris@1187
|
81
|
Chris@1187
|
82 if (!in_range_for(in, ix-1)) return false;
|
Chris@1187
|
83 if (!in_range_for(in, ix+1)) return false;
|
Chris@1187
|
84 if (in[ix] < in[ix+1]) return false;
|
Chris@1187
|
85 if (in[ix] < in[ix-1]) return false;
|
Chris@1187
|
86
|
Chris@1187
|
87 return true;
|
Chris@1187
|
88 }
|
Chris@1187
|
89
|
Chris@1190
|
90 /**
|
Chris@1190
|
91 * Return a column containing only the local peak values (all
|
Chris@1190
|
92 * others zero).
|
Chris@1190
|
93 */
|
Chris@1187
|
94 static Column peakPick(const Column &in) {
|
Chris@1187
|
95
|
Chris@1187
|
96 std::vector<float> out(in.size(), 0.f);
|
Chris@1187
|
97 for (int i = 0; in_range_for(in, i); ++i) {
|
Chris@1187
|
98 if (isPeak(in, i)) {
|
Chris@1187
|
99 out[i] = in[i];
|
Chris@1187
|
100 }
|
Chris@1187
|
101 }
|
Chris@1187
|
102
|
Chris@1187
|
103 return out;
|
Chris@1187
|
104 }
|
Chris@1187
|
105
|
Chris@1190
|
106 /**
|
Chris@1190
|
107 * Return a column normalized from the input column according to
|
Chris@1190
|
108 * the given normalization scheme.
|
Chris@1190
|
109 */
|
Chris@1193
|
110 static Column normalize(const Column &in, ColumnNormalization n) {
|
Chris@1187
|
111
|
Chris@1193
|
112 if (n == ColumnNormalization::None) {
|
Chris@1187
|
113 return in;
|
Chris@1187
|
114 }
|
Chris@1187
|
115
|
Chris@1193
|
116 float scale = 1.f;
|
Chris@1193
|
117
|
Chris@1193
|
118 if (n == ColumnNormalization::Sum1) {
|
Chris@1193
|
119
|
Chris@1193
|
120 float sum = 0.f;
|
Chris@1193
|
121
|
Chris@1193
|
122 for (auto v: in) {
|
Chris@1193
|
123 sum += v;
|
Chris@1193
|
124 }
|
Chris@1193
|
125
|
Chris@1193
|
126 if (sum != 0.f) {
|
Chris@1193
|
127 scale = 1.f / sum;
|
Chris@1193
|
128 }
|
Chris@1193
|
129 } else {
|
Chris@1193
|
130
|
Chris@1193
|
131 float max = *max_element(in.begin(), in.end());
|
Chris@1193
|
132
|
Chris@1193
|
133 if (n == ColumnNormalization::Max1) {
|
Chris@1193
|
134 if (max != 0.f) {
|
Chris@1193
|
135 scale = 1.f / max;
|
Chris@1193
|
136 }
|
Chris@1193
|
137 } else if (n == ColumnNormalization::Hybrid) {
|
Chris@1193
|
138 if (max > 0.f) {
|
Chris@1193
|
139 scale = log10f(max + 1.f) / max;
|
Chris@1193
|
140 }
|
Chris@1193
|
141 }
|
Chris@1193
|
142 }
|
Chris@1187
|
143
|
Chris@1197
|
144 return applyGain(in, scale);
|
Chris@1187
|
145 }
|
Chris@1187
|
146
|
Chris@1190
|
147 /**
|
Chris@1190
|
148 * Distribute the given column into a target vector of a different
|
Chris@1190
|
149 * size, optionally using linear interpolation. The binfory vector
|
Chris@1190
|
150 * contains a mapping from y coordinate (i.e. index into the
|
Chris@1190
|
151 * target vector) to bin (i.e. index into the source column).
|
Chris@1190
|
152 */
|
Chris@1187
|
153 static Column distribute(const Column &in,
|
Chris@1187
|
154 int h,
|
Chris@1187
|
155 const std::vector<double> &binfory,
|
Chris@1187
|
156 int minbin,
|
Chris@1187
|
157 bool interpolate) {
|
Chris@1198
|
158
|
Chris@1187
|
159 std::vector<float> out(h, 0.f);
|
Chris@1187
|
160 int bins = int(in.size());
|
Chris@1187
|
161
|
Chris@1187
|
162 for (int y = 0; y < h; ++y) {
|
Chris@1187
|
163
|
Chris@1187
|
164 double sy0 = binfory[y] - minbin;
|
Chris@1187
|
165 double sy1 = sy0 + 1;
|
Chris@1187
|
166 if (y+1 < h) {
|
Chris@1187
|
167 sy1 = binfory[y+1] - minbin;
|
Chris@1187
|
168 }
|
Chris@1187
|
169
|
Chris@1187
|
170 if (interpolate && fabs(sy1 - sy0) < 1.0) {
|
Chris@1187
|
171
|
Chris@1187
|
172 double centre = (sy0 + sy1) / 2;
|
Chris@1187
|
173 double dist = (centre - 0.5) - rint(centre - 0.5);
|
Chris@1187
|
174 int bin = int(centre);
|
Chris@1187
|
175
|
Chris@1187
|
176 int other = (dist < 0 ? (bin-1) : (bin+1));
|
Chris@1187
|
177
|
Chris@1187
|
178 if (bin < 0) bin = 0;
|
Chris@1187
|
179 if (bin >= bins) bin = bins-1;
|
Chris@1187
|
180
|
Chris@1187
|
181 if (other < 0 || other >= bins) {
|
Chris@1187
|
182 other = bin;
|
Chris@1187
|
183 }
|
Chris@1187
|
184
|
Chris@1187
|
185 double prop = 1.0 - fabs(dist);
|
Chris@1187
|
186
|
Chris@1187
|
187 double v0 = in[bin];
|
Chris@1187
|
188 double v1 = in[other];
|
Chris@1187
|
189
|
Chris@1187
|
190 out[y] = float(prop * v0 + (1.0 - prop) * v1);
|
Chris@1187
|
191
|
Chris@1187
|
192 } else { // not interpolating this one
|
Chris@1187
|
193
|
Chris@1187
|
194 int by0 = int(sy0 + 0.0001);
|
Chris@1187
|
195 int by1 = int(sy1 + 0.0001);
|
Chris@1187
|
196 if (by1 < by0 + 1) by1 = by0 + 1;
|
Chris@1253
|
197 if (by1 >= bins) by1 = bins - 1;
|
Chris@1198
|
198
|
Chris@1253
|
199 for (int bin = by0; bin <= by1; ++bin) {
|
Chris@1187
|
200
|
Chris@1187
|
201 float value = in[bin];
|
Chris@1187
|
202
|
Chris@1201
|
203 if (bin == by0 || value > out[y]) {
|
Chris@1187
|
204 out[y] = value;
|
Chris@1187
|
205 }
|
Chris@1187
|
206 }
|
Chris@1187
|
207 }
|
Chris@1187
|
208 }
|
Chris@1187
|
209
|
Chris@1187
|
210 return out;
|
Chris@1187
|
211 }
|
Chris@1187
|
212
|
Chris@1187
|
213 };
|
Chris@1187
|
214
|
Chris@1187
|
215 #endif
|
Chris@1187
|
216
|