view audio/AudioGenerator.cpp @ 588:d122d3595a32

Store aggregate models in the document and release them when they are invalidated (because their components have been released). They're no longer leaked, but we still don't save them in the session file.
author Chris Cannam
date Mon, 27 Feb 2017 16:26:37 +0000
parents 4480b031fe38
children 821aba42c1bb
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*-  vi:set ts=8 sts=4 sw=4: */

/*
    Sonic Visualiser
    An audio file viewer and annotation editor.
    Centre for Digital Music, Queen Mary, University of London.
    This file copyright 2006 Chris Cannam.
    
    This program is free software; you can redistribute it and/or
    modify it under the terms of the GNU General Public License as
    published by the Free Software Foundation; either version 2 of the
    License, or (at your option) any later version.  See the file
    COPYING included with this distribution for more information.
*/

#include "AudioGenerator.h"

#include "base/TempDirectory.h"
#include "base/PlayParameters.h"
#include "base/PlayParameterRepository.h"
#include "base/Pitch.h"
#include "base/Exceptions.h"

#include "data/model/NoteModel.h"
#include "data/model/FlexiNoteModel.h"
#include "data/model/DenseTimeValueModel.h"
#include "data/model/SparseTimeValueModel.h"
#include "data/model/SparseOneDimensionalModel.h"
#include "data/model/NoteData.h"

#include "ClipMixer.h"
#include "ContinuousSynth.h"

#include <iostream>
#include <cmath>

#include <QDir>
#include <QFile>

const sv_frame_t
AudioGenerator::m_processingBlockSize = 1024;

QString
AudioGenerator::m_sampleDir = "";

//#define DEBUG_AUDIO_GENERATOR 1

AudioGenerator::AudioGenerator() :
    m_sourceSampleRate(0),
    m_targetChannelCount(1),
    m_waveType(0),
    m_soloing(false),
    m_channelBuffer(0),
    m_channelBufSiz(0),
    m_channelBufCount(0)
{
    initialiseSampleDir();

    connect(PlayParameterRepository::getInstance(),
            SIGNAL(playClipIdChanged(const Playable *, QString)),
            this,
            SLOT(playClipIdChanged(const Playable *, QString)));
}

AudioGenerator::~AudioGenerator()
{
#ifdef DEBUG_AUDIO_GENERATOR
    SVDEBUG << "AudioGenerator::~AudioGenerator" << endl;
#endif
}

void
AudioGenerator::initialiseSampleDir()
{
    if (m_sampleDir != "") return;

    try {
        m_sampleDir = TempDirectory::getInstance()->getSubDirectoryPath("samples");
    } catch (DirectoryCreationFailed f) {
        cerr << "WARNING: AudioGenerator::initialiseSampleDir:"
                  << " Failed to create temporary sample directory"
                  << endl;
        m_sampleDir = "";
        return;
    }

    QDir sampleResourceDir(":/samples", "*.wav");

    for (unsigned int i = 0; i < sampleResourceDir.count(); ++i) {

        QString fileName(sampleResourceDir[i]);
        QFile file(sampleResourceDir.filePath(fileName));
        QString target = QDir(m_sampleDir).filePath(fileName);

        if (!file.copy(target)) {
            cerr << "WARNING: AudioGenerator::getSampleDir: "
                      << "Unable to copy " << fileName
                      << " into temporary directory \""
                      << m_sampleDir << "\"" << endl;
        } else {
            QFile tf(target);
            tf.setPermissions(tf.permissions() |
                              QFile::WriteOwner |
                              QFile::WriteUser);
        }
    }
}

bool
AudioGenerator::addModel(Model *model)
{
    if (m_sourceSampleRate == 0) {

	m_sourceSampleRate = model->getSampleRate();

    } else {

	DenseTimeValueModel *dtvm =
	    dynamic_cast<DenseTimeValueModel *>(model);

	if (dtvm) {
	    m_sourceSampleRate = model->getSampleRate();
	    return true;
	}
    }

    const Playable *playable = model;
    if (!playable || !playable->canPlay()) return 0;

    PlayParameters *parameters =
	PlayParameterRepository::getInstance()->getPlayParameters(playable);

    bool willPlay = !parameters->isPlayMuted();
    
    if (usesClipMixer(model)) {
        ClipMixer *mixer = makeClipMixerFor(model);
        if (mixer) {
            QMutexLocker locker(&m_mutex);
            m_clipMixerMap[model] = mixer;
            return willPlay;
        }
    }

    if (usesContinuousSynth(model)) {
        ContinuousSynth *synth = makeSynthFor(model);
        if (synth) {
            QMutexLocker locker(&m_mutex);
            m_continuousSynthMap[model] = synth;
            return willPlay;
        }
    }

    return false;
}

void
AudioGenerator::playClipIdChanged(const Playable *playable, QString)
{
    const Model *model = dynamic_cast<const Model *>(playable);
    if (!model) {
        cerr << "WARNING: AudioGenerator::playClipIdChanged: playable "
                  << playable << " is not a supported model type"
                  << endl;
        return;
    }

    if (m_clipMixerMap.find(model) == m_clipMixerMap.end()) return;

    ClipMixer *mixer = makeClipMixerFor(model);
    if (mixer) {
        QMutexLocker locker(&m_mutex);
        m_clipMixerMap[model] = mixer;
    }
}

bool
AudioGenerator::usesClipMixer(const Model *model)
{
    bool clip = 
        (qobject_cast<const SparseOneDimensionalModel *>(model) ||
         qobject_cast<const NoteModel *>(model) ||
         qobject_cast<const FlexiNoteModel *>(model));
    return clip;
}

bool
AudioGenerator::wantsQuieterClips(const Model *model)
{
    // basically, anything that usually has sustain (like notes) or
    // often has multiple sounds at once (like notes) wants to use a
    // quieter level than simple click tracks
    bool does = 
        (qobject_cast<const NoteModel *>(model) ||
         qobject_cast<const FlexiNoteModel *>(model));
    return does;
}

bool
AudioGenerator::usesContinuousSynth(const Model *model)
{
    bool cont = 
        (qobject_cast<const SparseTimeValueModel *>(model));
    return cont;
}

ClipMixer *
AudioGenerator::makeClipMixerFor(const Model *model)
{
    QString clipId;

    const Playable *playable = model;
    if (!playable || !playable->canPlay()) return 0;

    PlayParameters *parameters =
	PlayParameterRepository::getInstance()->getPlayParameters(playable);
    if (parameters) {
        clipId = parameters->getPlayClipId();
    }

#ifdef DEBUG_AUDIO_GENERATOR
    std::cerr << "AudioGenerator::makeClipMixerFor(" << model << "): sample id = " << clipId << std::endl;
#endif

    if (clipId == "") {
        SVDEBUG << "AudioGenerator::makeClipMixerFor(" << model << "): no sample, skipping" << endl;
        return 0;
    }

    ClipMixer *mixer = new ClipMixer(m_targetChannelCount,
                                     m_sourceSampleRate,
                                     m_processingBlockSize);

    double clipF0 = Pitch::getFrequencyForPitch(60, 0, 440.0); // required

    QString clipPath = QString("%1/%2.wav").arg(m_sampleDir).arg(clipId);

    double level = wantsQuieterClips(model) ? 0.5 : 1.0;
    if (!mixer->loadClipData(clipPath, clipF0, level)) {
        delete mixer;
        return 0;
    }

#ifdef DEBUG_AUDIO_GENERATOR
    std::cerr << "AudioGenerator::makeClipMixerFor(" << model << "): loaded clip " << clipId << std::endl;
#endif

    return mixer;
}

ContinuousSynth *
AudioGenerator::makeSynthFor(const Model *model)
{
    const Playable *playable = model;
    if (!playable || !playable->canPlay()) return 0;

    ContinuousSynth *synth = new ContinuousSynth(m_targetChannelCount,
                                                 m_sourceSampleRate,
                                                 m_processingBlockSize,
                                                 m_waveType);

#ifdef DEBUG_AUDIO_GENERATOR
    std::cerr << "AudioGenerator::makeSynthFor(" << model << "): created synth" << std::endl;
#endif

    return synth;
}

void
AudioGenerator::removeModel(Model *model)
{
    SparseOneDimensionalModel *sodm =
	dynamic_cast<SparseOneDimensionalModel *>(model);
    if (!sodm) return; // nothing to do

    QMutexLocker locker(&m_mutex);

    if (m_clipMixerMap.find(sodm) == m_clipMixerMap.end()) return;

    ClipMixer *mixer = m_clipMixerMap[sodm];
    m_clipMixerMap.erase(sodm);
    delete mixer;
}

void
AudioGenerator::clearModels()
{
    QMutexLocker locker(&m_mutex);

    while (!m_clipMixerMap.empty()) {
        ClipMixer *mixer = m_clipMixerMap.begin()->second;
	m_clipMixerMap.erase(m_clipMixerMap.begin());
	delete mixer;
    }
}    

void
AudioGenerator::reset()
{
    QMutexLocker locker(&m_mutex);

#ifdef DEBUG_AUDIO_GENERATOR
    cerr << "AudioGenerator::reset()" << endl;
#endif

    for (ClipMixerMap::iterator i = m_clipMixerMap.begin(); i != m_clipMixerMap.end(); ++i) {
	if (i->second) {
	    i->second->reset();
	}
    }

    m_noteOffs.clear();
}

void
AudioGenerator::setTargetChannelCount(int targetChannelCount)
{
    if (m_targetChannelCount == targetChannelCount) return;

//    SVDEBUG << "AudioGenerator::setTargetChannelCount(" << targetChannelCount << ")" << endl;

    QMutexLocker locker(&m_mutex);
    m_targetChannelCount = targetChannelCount;

    for (ClipMixerMap::iterator i = m_clipMixerMap.begin(); i != m_clipMixerMap.end(); ++i) {
	if (i->second) i->second->setChannelCount(targetChannelCount);
    }
}

sv_frame_t
AudioGenerator::getBlockSize() const
{
    return m_processingBlockSize;
}

void
AudioGenerator::setSoloModelSet(std::set<Model *> s)
{
    QMutexLocker locker(&m_mutex);

    m_soloModelSet = s;
    m_soloing = true;
}

void
AudioGenerator::clearSoloModelSet()
{
    QMutexLocker locker(&m_mutex);

    m_soloModelSet.clear();
    m_soloing = false;
}

sv_frame_t
AudioGenerator::mixModel(Model *model, sv_frame_t startFrame, sv_frame_t frameCount,
			 float **buffer, sv_frame_t fadeIn, sv_frame_t fadeOut)
{
    if (m_sourceSampleRate == 0) {
	cerr << "WARNING: AudioGenerator::mixModel: No base source sample rate available" << endl;
	return frameCount;
    }

    QMutexLocker locker(&m_mutex);

    Playable *playable = model;
    if (!playable || !playable->canPlay()) return frameCount;

    PlayParameters *parameters =
	PlayParameterRepository::getInstance()->getPlayParameters(playable);
    if (!parameters) return frameCount;

    bool playing = !parameters->isPlayMuted();
    if (!playing) {
#ifdef DEBUG_AUDIO_GENERATOR
        cout << "AudioGenerator::mixModel(" << model << "): muted" << endl;
#endif
        return frameCount;
    }

    if (m_soloing) {
        if (m_soloModelSet.find(model) == m_soloModelSet.end()) {
#ifdef DEBUG_AUDIO_GENERATOR
            cout << "AudioGenerator::mixModel(" << model << "): not one of the solo'd models" << endl;
#endif
            return frameCount;
        }
    }

    float gain = parameters->getPlayGain();
    float pan = parameters->getPlayPan();

    DenseTimeValueModel *dtvm = dynamic_cast<DenseTimeValueModel *>(model);
    if (dtvm) {
	return mixDenseTimeValueModel(dtvm, startFrame, frameCount,
				      buffer, gain, pan, fadeIn, fadeOut);
    }

    if (usesClipMixer(model)) {
        return mixClipModel(model, startFrame, frameCount,
                            buffer, gain, pan);
    }

    if (usesContinuousSynth(model)) {
        return mixContinuousSynthModel(model, startFrame, frameCount,
                                       buffer, gain, pan);
    }

    std::cerr << "AudioGenerator::mixModel: WARNING: Model " << model << " of type " << model->getTypeName() << " is marked as playable, but I have no mechanism to play it" << std::endl;

    return frameCount;
}

sv_frame_t
AudioGenerator::mixDenseTimeValueModel(DenseTimeValueModel *dtvm,
				       sv_frame_t startFrame, sv_frame_t frames,
				       float **buffer, float gain, float pan,
				       sv_frame_t fadeIn, sv_frame_t fadeOut)
{
    sv_frame_t maxFrames = frames + std::max(fadeIn, fadeOut);

    int modelChannels = dtvm->getChannelCount();

    if (m_channelBufSiz < maxFrames || m_channelBufCount < modelChannels) {

        for (int c = 0; c < m_channelBufCount; ++c) {
            delete[] m_channelBuffer[c];
        }

	delete[] m_channelBuffer;
        m_channelBuffer = new float *[modelChannels];

        for (int c = 0; c < modelChannels; ++c) {
            m_channelBuffer[c] = new float[maxFrames];
        }

        m_channelBufCount = modelChannels;
	m_channelBufSiz = maxFrames;
    }

    sv_frame_t got = 0;

    if (startFrame >= fadeIn/2) {

        auto data = dtvm->getMultiChannelData(0, modelChannels - 1,
                                              startFrame - fadeIn/2,
                                              frames + fadeOut/2 + fadeIn/2);

        for (int c = 0; c < modelChannels; ++c) {
            copy(data[c].begin(), data[c].end(), m_channelBuffer[c]);
        }

        got = data[0].size();

    } else {
        sv_frame_t missing = fadeIn/2 - startFrame;

        if (missing > 0) {
            cerr << "note: channelBufSiz = " << m_channelBufSiz
                 << ", frames + fadeOut/2 = " << frames + fadeOut/2 
                 << ", startFrame = " << startFrame 
                 << ", missing = " << missing << endl;
        }

        auto data = dtvm->getMultiChannelData(0, modelChannels - 1,
                                              startFrame,
                                              frames + fadeOut/2);
        for (int c = 0; c < modelChannels; ++c) {
            copy(data[c].begin(), data[c].end(), m_channelBuffer[c] + missing);
        }

        got = data[0].size() + missing;
    }	    

    for (int c = 0; c < m_targetChannelCount; ++c) {

	int sourceChannel = (c % modelChannels);

//	SVDEBUG << "mixing channel " << c << " from source channel " << sourceChannel << endl;

	float channelGain = gain;
	if (pan != 0.0) {
	    if (c == 0) {
		if (pan > 0.0) channelGain *= 1.0f - pan;
	    } else {
		if (pan < 0.0) channelGain *= pan + 1.0f;
	    }
	}

	for (sv_frame_t i = 0; i < fadeIn/2; ++i) {
	    float *back = buffer[c];
	    back -= fadeIn/2;
	    back[i] +=
                (channelGain * m_channelBuffer[sourceChannel][i] * float(i))
                / float(fadeIn);
	}

	for (sv_frame_t i = 0; i < frames + fadeOut/2; ++i) {
	    float mult = channelGain;
	    if (i < fadeIn/2) {
		mult = (mult * float(i)) / float(fadeIn);
	    }
	    if (i > frames - fadeOut/2) {
		mult = (mult * float((frames + fadeOut/2) - i)) / float(fadeOut);
	    }
            float val = m_channelBuffer[sourceChannel][i];
            if (i >= got) val = 0.f;
	    buffer[c][i] += mult * val;
	}
    }

    return got;
}
  
sv_frame_t
AudioGenerator::mixClipModel(Model *model,
                             sv_frame_t startFrame, sv_frame_t frames,
                             float **buffer, float gain, float pan)
{
    ClipMixer *clipMixer = m_clipMixerMap[model];
    if (!clipMixer) return 0;

    int blocks = int(frames / m_processingBlockSize);
    
    //!!! todo: the below -- it matters

    //!!! hang on -- the fact that the audio callback play source's
    //buffer is a multiple of the plugin's buffer size doesn't mean
    //that we always get called for a multiple of it here (because it
    //also depends on the JACK block size).  how should we ensure that
    //all models write the same amount in to the mix, and that we
    //always have a multiple of the plugin buffer size?  I guess this
    //class has to be queryable for the plugin buffer size & the
    //callback play source has to use that as a multiple for all the
    //calls to mixModel

    sv_frame_t got = blocks * m_processingBlockSize;

#ifdef DEBUG_AUDIO_GENERATOR
    cout << "mixModel [clip]: start " << startFrame << ", frames " << frames
         << ", blocks " << blocks << ", have " << m_noteOffs.size()
         << " note-offs" << endl;
#endif

    ClipMixer::NoteStart on;
    ClipMixer::NoteEnd off;

    NoteOffSet &noteOffs = m_noteOffs[model];

    float **bufferIndexes = new float *[m_targetChannelCount];

    for (int i = 0; i < blocks; ++i) {

	sv_frame_t reqStart = startFrame + i * m_processingBlockSize;

        NoteList notes;
        NoteExportable *exportable = dynamic_cast<NoteExportable *>(model);
        if (exportable) {
            notes = exportable->getNotesWithin(reqStart,
                                               reqStart + m_processingBlockSize);
        }

        std::vector<ClipMixer::NoteStart> starts;
        std::vector<ClipMixer::NoteEnd> ends;

	for (NoteList::const_iterator ni = notes.begin();
             ni != notes.end(); ++ni) {

	    sv_frame_t noteFrame = ni->start;

	    if (noteFrame < reqStart ||
		noteFrame >= reqStart + m_processingBlockSize) continue;

	    while (noteOffs.begin() != noteOffs.end() &&
		   noteOffs.begin()->frame <= noteFrame) {

                sv_frame_t eventFrame = noteOffs.begin()->frame;
                if (eventFrame < reqStart) eventFrame = reqStart;

                off.frameOffset = eventFrame - reqStart;
                off.frequency = noteOffs.begin()->frequency;

#ifdef DEBUG_AUDIO_GENERATOR
		cerr << "mixModel [clip]: adding note-off at frame " << eventFrame << " frame offset " << off.frameOffset << " frequency " << off.frequency << endl;
#endif

                ends.push_back(off);
		noteOffs.erase(noteOffs.begin());
	    }

            on.frameOffset = noteFrame - reqStart;
            on.frequency = ni->getFrequency();
            on.level = float(ni->velocity) / 127.0f;
            on.pan = pan;

#ifdef DEBUG_AUDIO_GENERATOR
	    cout << "mixModel [clip]: adding note at frame " << noteFrame << ", frame offset " << on.frameOffset << " frequency " << on.frequency << ", level " << on.level << endl;
#endif
	    
            starts.push_back(on);
	    noteOffs.insert
                (NoteOff(on.frequency, noteFrame + ni->duration));
	}

	while (noteOffs.begin() != noteOffs.end() &&
	       noteOffs.begin()->frame <= reqStart + m_processingBlockSize) {

            sv_frame_t eventFrame = noteOffs.begin()->frame;
            if (eventFrame < reqStart) eventFrame = reqStart;

            off.frameOffset = eventFrame - reqStart;
            off.frequency = noteOffs.begin()->frequency;

#ifdef DEBUG_AUDIO_GENERATOR
            cerr << "mixModel [clip]: adding leftover note-off at frame " << eventFrame << " frame offset " << off.frameOffset << " frequency " << off.frequency << endl;
#endif

            ends.push_back(off);
            noteOffs.erase(noteOffs.begin());
	}

	for (int c = 0; c < m_targetChannelCount; ++c) {
            bufferIndexes[c] = buffer[c] + i * m_processingBlockSize;
        }

        clipMixer->mix(bufferIndexes, gain, starts, ends);
    }

    delete[] bufferIndexes;

    return got;
}

sv_frame_t
AudioGenerator::mixContinuousSynthModel(Model *model,
                                        sv_frame_t startFrame,
                                        sv_frame_t frames,
                                        float **buffer,
                                        float gain, 
                                        float pan)
{
    ContinuousSynth *synth = m_continuousSynthMap[model];
    if (!synth) return 0;

    // only type we support here at the moment
    SparseTimeValueModel *stvm = qobject_cast<SparseTimeValueModel *>(model);
    if (stvm->getScaleUnits() != "Hz") return 0;

    int blocks = int(frames / m_processingBlockSize);

    //!!! todo: see comment in mixClipModel

    sv_frame_t got = blocks * m_processingBlockSize;

#ifdef DEBUG_AUDIO_GENERATOR
    cout << "mixModel [synth]: frames " << frames
	      << ", blocks " << blocks << endl;
#endif
    
    float **bufferIndexes = new float *[m_targetChannelCount];

    for (int i = 0; i < blocks; ++i) {

	sv_frame_t reqStart = startFrame + i * m_processingBlockSize;

	for (int c = 0; c < m_targetChannelCount; ++c) {
            bufferIndexes[c] = buffer[c] + i * m_processingBlockSize;
        }

        SparseTimeValueModel::PointList points = 
            stvm->getPoints(reqStart, reqStart + m_processingBlockSize);

        // by default, repeat last frequency
        float f0 = 0.f;

        // go straight to the last freq that is genuinely in this range
        for (SparseTimeValueModel::PointList::const_iterator itr = points.end();
             itr != points.begin(); ) {
            --itr;
            if (itr->frame >= reqStart &&
                itr->frame < reqStart + m_processingBlockSize) {
                f0 = itr->value;
                break;
            }
        }

        // if we found no such frequency and the next point is further
        // away than twice the model resolution, go silent (same
        // criterion TimeValueLayer uses for ending a discrete curve
        // segment)
        if (f0 == 0.f) {
            SparseTimeValueModel::PointList nextPoints = 
                stvm->getNextPoints(reqStart + m_processingBlockSize);
            if (nextPoints.empty() ||
                nextPoints.begin()->frame > reqStart + 2 * stvm->getResolution()) {
                f0 = -1.f;
            }
        }

//        cerr << "f0 = " << f0 << endl;

        synth->mix(bufferIndexes,
                   gain,
                   pan,
                   f0);
    }

    delete[] bufferIndexes;

    return got;
}