Mercurial > hg > svapp
view audio/ContinuousSynth.cpp @ 626:51ecc3e2d71c
Don't resample an incoming audio file to match the main model's rate, if the aim of importing is to replace the main model anyway
author | Chris Cannam |
---|---|
date | Tue, 09 Oct 2018 15:55:16 +0100 |
parents | 56acd9368532 |
children |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "ContinuousSynth.h" #include "base/Debug.h" #include "system/System.h" #include <cmath> ContinuousSynth::ContinuousSynth(int channels, sv_samplerate_t sampleRate, sv_frame_t blockSize, int waveType) : m_channels(channels), m_sampleRate(sampleRate), m_blockSize(blockSize), m_prevF0(-1.0), m_phase(0.0), m_wavetype(waveType) // 0: 3 sinusoids, 1: 1 sinusoid, 2: sawtooth, 3: square { } ContinuousSynth::~ContinuousSynth() { } void ContinuousSynth::reset() { m_phase = 0; } void ContinuousSynth::mix(float **toBuffers, float gain, float pan, float f0f) { double f0(f0f); if (f0 == 0.0) f0 = m_prevF0; bool wasOn = (m_prevF0 > 0.0); bool nowOn = (f0 > 0.0); if (!nowOn && !wasOn) { m_phase = 0; return; } sv_frame_t fadeLength = 100; float *levels = new float[m_channels]; for (int c = 0; c < m_channels; ++c) { levels[c] = gain * 0.5f; // scale gain otherwise too loud compared to source } if (pan != 0.0 && m_channels == 2) { levels[0] *= 1.0f - pan; levels[1] *= pan + 1.0f; } // cerr << "ContinuousSynth::mix: f0 = " << f0 << " (from " << m_prevF0 << "), phase = " << m_phase << endl; for (sv_frame_t i = 0; i < m_blockSize; ++i) { double fHere = (nowOn ? f0 : m_prevF0); if (wasOn && nowOn && (f0 != m_prevF0) && (i < fadeLength)) { // interpolate the frequency shift fHere = m_prevF0 + ((f0 - m_prevF0) * double(i)) / double(fadeLength); } double phasor = (fHere * 2 * M_PI) / m_sampleRate; m_phase = m_phase + phasor; int harmonics = int((m_sampleRate / 4) / fHere - 1); if (harmonics < 1) harmonics = 1; switch (m_wavetype) { case 1: harmonics = 1; break; case 2: break; case 3: break; default: harmonics = 3; break; } for (int h = 0; h < harmonics; ++h) { double v = 0; double hn = 0; double hp = 0; switch (m_wavetype) { case 1: // single sinusoid v = sin(m_phase); break; case 2: // sawtooth if (h != 0) { hn = h + 1; hp = m_phase * hn; v = -(1.0 / M_PI) * sin(hp) / hn; } else { v = 0.5; } break; case 3: // square hn = h*2 + 1; hp = m_phase * hn; v = sin(hp) / hn; break; default: // 3 sinusoids hn = h + 1; hp = m_phase * hn; v = sin(hp) / hn; break; } if (!wasOn && i < fadeLength) { // fade in v = v * (double(i) / double(fadeLength)); } else if (!nowOn) { // fade out if (i > fadeLength) v = 0; else v = v * (1.0 - (double(i) / double(fadeLength))); } for (int c = 0; c < m_channels; ++c) { toBuffers[c][i] += float(levels[c] * v); } } } m_prevF0 = f0; delete[] levels; }