Mercurial > hg > svapp
view audioio/AudioPulseAudioTarget.cpp @ 154:386b02c926bf
* Merge from one-fftdataserver-per-fftmodel branch. This bit of
reworking (which is not described very accurately by the title of
the branch) turns the MatrixFile object into something that either
reads or writes, but not both, and separates the FFT file cache
reader and writer implementations separately. This allows the
FFT data server to have a single thread owning writers and one reader
per "customer" thread, and for all locking to be vastly simplified
and concentrated in the data server alone (because none of the
classes it makes use of is used in more than one thread at a time).
The result is faster and more trustworthy code.
author | Chris Cannam |
---|---|
date | Tue, 27 Jan 2009 13:25:10 +0000 |
parents | 4c9c04645685 |
children | 3bd87e04f060 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2008 QMUL. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #ifdef HAVE_LIBPULSE #include "AudioPulseAudioTarget.h" #include "AudioCallbackPlaySource.h" #include <QMutexLocker> #include <iostream> #include <cassert> #include <cmath> //#define DEBUG_AUDIO_PULSE_AUDIO_TARGET 1 AudioPulseAudioTarget::AudioPulseAudioTarget(AudioCallbackPlaySource *source) : AudioCallbackPlayTarget(source), m_mutex(QMutex::Recursive), m_loop(0), m_api(0), m_context(0), m_stream(0), m_loopThread(0), m_bufferSize(0), m_sampleRate(0), m_latency(0), m_done(false) { #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cerr << "AudioPulseAudioTarget: Initialising for PulseAudio" << std::endl; #endif m_loop = pa_mainloop_new(); if (!m_loop) { std::cerr << "ERROR: AudioPulseAudioTarget: Failed to create main loop" << std::endl; return; } m_api = pa_mainloop_get_api(m_loop); //!!! handle signals how? m_bufferSize = 20480; m_sampleRate = 44100; if (m_source && (m_source->getSourceSampleRate() != 0)) { m_sampleRate = m_source->getSourceSampleRate(); } m_spec.rate = m_sampleRate; m_spec.channels = 2; m_spec.format = PA_SAMPLE_FLOAT32NE; m_context = pa_context_new(m_api, source->getClientName().toLocal8Bit().data()); if (!m_context) { std::cerr << "ERROR: AudioPulseAudioTarget: Failed to create context object" << std::endl; return; } pa_context_set_state_callback(m_context, contextStateChangedStatic, this); pa_context_connect(m_context, 0, (pa_context_flags_t)0, 0); // default server m_loopThread = new MainLoopThread(m_loop); m_loopThread->start(); #ifdef DEBUG_PULSE_AUDIO_TARGET std::cerr << "AudioPulseAudioTarget: initialised OK" << std::endl; #endif } AudioPulseAudioTarget::~AudioPulseAudioTarget() { std::cerr << "AudioPulseAudioTarget::~AudioPulseAudioTarget()" << std::endl; if (m_source) { m_source->setTarget(0, m_bufferSize); } shutdown(); QMutexLocker locker(&m_mutex); if (m_stream) pa_stream_unref(m_stream); if (m_context) pa_context_unref(m_context); if (m_loop) { pa_signal_done(); pa_mainloop_free(m_loop); } m_stream = 0; m_context = 0; m_loop = 0; std::cerr << "AudioPulseAudioTarget::~AudioPulseAudioTarget() done" << std::endl; } void AudioPulseAudioTarget::shutdown() { m_done = true; } bool AudioPulseAudioTarget::isOK() const { return (m_context != 0); } double AudioPulseAudioTarget::getCurrentTime() const { if (!m_stream) return 0.0; pa_usec_t usec = 0; pa_stream_get_time(m_stream, &usec); return usec / 1000000.f; } void AudioPulseAudioTarget::sourceModelReplaced() { m_source->setTargetSampleRate(m_sampleRate); } void AudioPulseAudioTarget::streamWriteStatic(pa_stream *stream, size_t length, void *data) { AudioPulseAudioTarget *target = (AudioPulseAudioTarget *)data; assert(stream == target->m_stream); target->streamWrite(length); } void AudioPulseAudioTarget::streamWrite(size_t requested) { #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cout << "AudioPulseAudioTarget::streamWrite(" << requested << ")" << std::endl; #endif if (m_done) return; QMutexLocker locker(&m_mutex); if (m_source->getTargetPlayLatency() == 0) { //!!! need better test //!!! pa_usec_t latency = 0; int negative = 0; if (pa_stream_get_latency(m_stream, &latency, &negative)) { std::cerr << "AudioPulseAudioTarget::contextStateChanged: Failed to query latency" << std::endl; } // std::cerr << "Latency = " << latency << " usec" << std::endl; int latframes = (latency / 1000000.f) * float(m_sampleRate); // std::cerr << "that's " << latframes << " frames" << std::endl; m_source->setTargetPlayLatency(latframes); //!!! buh } static float *output = 0; static float **tmpbuf = 0; static size_t tmpbufch = 0; static size_t tmpbufsz = 0; size_t sourceChannels = m_source->getSourceChannelCount(); // Because we offer pan, we always want at least 2 channels if (sourceChannels < 2) sourceChannels = 2; size_t nframes = requested / (sourceChannels * sizeof(float)); if (nframes > m_bufferSize) { std::cerr << "WARNING: AudioPulseAudioTarget::streamWrite: nframes " << nframes << " > m_bufferSize " << m_bufferSize << std::endl; } #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cout << "AudioPulseAudioTarget::streamWrite: nframes = " << nframes << std::endl; #endif if (!tmpbuf || tmpbufch != sourceChannels || int(tmpbufsz) < nframes) { if (tmpbuf) { for (size_t i = 0; i < tmpbufch; ++i) { delete[] tmpbuf[i]; } delete[] tmpbuf; } if (output) { delete[] output; } tmpbufch = sourceChannels; tmpbufsz = nframes; tmpbuf = new float *[tmpbufch]; for (size_t i = 0; i < tmpbufch; ++i) { tmpbuf[i] = new float[tmpbufsz]; } output = new float[tmpbufsz * tmpbufch]; } size_t received = m_source->getSourceSamples(nframes, tmpbuf); #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cerr << "requested " << nframes << ", received " << received << std::endl; if (received < nframes) { std::cerr << "*** WARNING: Wrong number of frames received" << std::endl; } #endif float peakLeft = 0.0, peakRight = 0.0; for (size_t ch = 0; ch < 2; ++ch) { float peak = 0.0; if (ch < sourceChannels) { // PulseAudio samples are interleaved for (size_t i = 0; i < nframes; ++i) { if (i < received) { output[i * 2 + ch] = tmpbuf[ch][i] * m_outputGain; float sample = fabsf(output[i * 2 + ch]); if (sample > peak) peak = sample; } else { output[i * 2 + ch] = 0; } } } else if (ch == 1 && sourceChannels == 1) { for (size_t i = 0; i < nframes; ++i) { if (i < received) { output[i * 2 + ch] = tmpbuf[0][i] * m_outputGain; float sample = fabsf(output[i * 2 + ch]); if (sample > peak) peak = sample; } else { output[i * 2 + ch] = 0; } } } else { for (size_t i = 0; i < nframes; ++i) { output[i * 2 + ch] = 0; } } if (ch == 0) peakLeft = peak; if (ch > 0 || sourceChannels == 1) peakRight = peak; } #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cerr << "calling pa_stream_write with " << nframes * tmpbufch * sizeof(float) << " bytes" << std::endl; #endif pa_stream_write(m_stream, output, nframes * tmpbufch * sizeof(float), 0, 0, PA_SEEK_RELATIVE); m_source->setOutputLevels(peakLeft, peakRight); return; } void AudioPulseAudioTarget::streamStateChangedStatic(pa_stream *stream, void *data) { AudioPulseAudioTarget *target = (AudioPulseAudioTarget *)data; assert(stream == target->m_stream); target->streamStateChanged(); } void AudioPulseAudioTarget::streamStateChanged() { #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cerr << "AudioPulseAudioTarget::streamStateChanged" << std::endl; #endif QMutexLocker locker(&m_mutex); switch (pa_stream_get_state(m_stream)) { case PA_STREAM_CREATING: case PA_STREAM_TERMINATED: break; case PA_STREAM_READY: std::cerr << "AudioPulseAudioTarget::streamStateChanged: Ready" << std::endl; break; case PA_STREAM_FAILED: default: std::cerr << "AudioPulseAudioTarget::streamStateChanged: Error: " << pa_strerror(pa_context_errno(m_context)) << std::endl; //!!! do something... break; } } void AudioPulseAudioTarget::contextStateChangedStatic(pa_context *context, void *data) { AudioPulseAudioTarget *target = (AudioPulseAudioTarget *)data; assert(context == target->m_context); target->contextStateChanged(); } void AudioPulseAudioTarget::contextStateChanged() { #ifdef DEBUG_AUDIO_PULSE_AUDIO_TARGET std::cerr << "AudioPulseAudioTarget::contextStateChanged" << std::endl; #endif QMutexLocker locker(&m_mutex); switch (pa_context_get_state(m_context)) { case PA_CONTEXT_CONNECTING: case PA_CONTEXT_AUTHORIZING: case PA_CONTEXT_SETTING_NAME: break; case PA_CONTEXT_READY: { std::cerr << "AudioPulseAudioTarget::contextStateChanged: Ready" << std::endl; m_stream = pa_stream_new(m_context, "stream", &m_spec, 0); assert(m_stream); //!!! pa_stream_set_state_callback(m_stream, streamStateChangedStatic, this); pa_stream_set_write_callback(m_stream, streamWriteStatic, this); pa_stream_set_overflow_callback(m_stream, streamOverflowStatic, this); pa_stream_set_underflow_callback(m_stream, streamUnderflowStatic, this); if (pa_stream_connect_playback (m_stream, 0, 0, pa_stream_flags_t(PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_AUTO_TIMING_UPDATE), 0, 0)) { //??? return value std::cerr << "AudioPulseAudioTarget: Failed to connect playback stream" << std::endl; } pa_usec_t latency = 0; int negative = 0; if (pa_stream_get_latency(m_stream, &latency, &negative)) { std::cerr << "AudioPulseAudioTarget::contextStateChanged: Failed to query latency" << std::endl; } std::cerr << "Latency = " << latency << " usec" << std::endl; int latframes = (latency / 1000000.f) * float(m_sampleRate); std::cerr << "that's " << latframes << " frames" << std::endl; const pa_buffer_attr *attr; if (!(attr = pa_stream_get_buffer_attr(m_stream))) { std::cerr << "AudioPulseAudioTarget::contextStateChanged: Cannot query stream buffer attributes" << std::endl; m_source->setTarget(this, 4096); m_source->setTargetSampleRate(m_sampleRate); m_source->setTargetPlayLatency(latframes); } else { std::cerr << "AudioPulseAudioTarget::contextStateChanged: stream max length = " << attr->maxlength << std::endl; int latency = attr->tlength; std::cerr << "latency = " << latency << std::endl; m_source->setTarget(this, attr->maxlength); m_source->setTargetSampleRate(m_sampleRate); m_source->setTargetPlayLatency(latframes); } break; } case PA_CONTEXT_TERMINATED: std::cerr << "AudioPulseAudioTarget::contextStateChanged: Terminated" << std::endl; //!!! do something... break; case PA_CONTEXT_FAILED: default: std::cerr << "AudioPulseAudioTarget::contextStateChanged: Error: " << pa_strerror(pa_context_errno(m_context)) << std::endl; //!!! do something... break; } } void AudioPulseAudioTarget::streamOverflowStatic(pa_stream *, void *) { std::cerr << "AudioPulseAudioTarget::streamOverflowStatic: Overflow!" << std::endl; } void AudioPulseAudioTarget::streamUnderflowStatic(pa_stream *, void *data) { std::cerr << "AudioPulseAudioTarget::streamUnderflowStatic: Underflow!" << std::endl; AudioPulseAudioTarget *target = (AudioPulseAudioTarget *)data; if (target && target->m_source) { target->m_source->audioProcessingOverload(); } } #endif /* HAVE_PULSEAUDIO */