Mercurial > hg > svapp
comparison audioio/PhaseVocoderTimeStretcher.cpp @ 43:3c5756fb6a68
* Move some things around to facilitate plundering libraries for other
applications without needing to duplicate so much code.
sv/osc -> data/osc
sv/audioio -> audioio
sv/transform -> plugin/transform
sv/document -> document (will rename to framework in next commit)
author | Chris Cannam |
---|---|
date | Wed, 24 Oct 2007 16:34:31 +0000 |
parents | |
children | 0ffab5d7e3e1 |
comparison
equal
deleted
inserted
replaced
42:0619006a1ee3 | 43:3c5756fb6a68 |
---|---|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ | |
2 | |
3 /* | |
4 Sonic Visualiser | |
5 An audio file viewer and annotation editor. | |
6 Centre for Digital Music, Queen Mary, University of London. | |
7 This file copyright 2006 Chris Cannam and QMUL. | |
8 | |
9 This program is free software; you can redistribute it and/or | |
10 modify it under the terms of the GNU General Public License as | |
11 published by the Free Software Foundation; either version 2 of the | |
12 License, or (at your option) any later version. See the file | |
13 COPYING included with this distribution for more information. | |
14 */ | |
15 | |
16 #include "PhaseVocoderTimeStretcher.h" | |
17 | |
18 #include <iostream> | |
19 #include <cassert> | |
20 | |
21 #include <QMutexLocker> | |
22 | |
23 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1 | |
24 | |
25 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate, | |
26 size_t channels, | |
27 float ratio, | |
28 bool sharpen, | |
29 size_t maxOutputBlockSize) : | |
30 m_sampleRate(sampleRate), | |
31 m_channels(channels), | |
32 m_maxOutputBlockSize(maxOutputBlockSize), | |
33 m_ratio(ratio), | |
34 m_sharpen(sharpen), | |
35 m_totalCount(0), | |
36 m_transientCount(0), | |
37 m_n2sum(0), | |
38 m_mutex(new QMutex()) | |
39 { | |
40 initialise(); | |
41 } | |
42 | |
43 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher() | |
44 { | |
45 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl; | |
46 | |
47 cleanup(); | |
48 | |
49 delete m_mutex; | |
50 } | |
51 | |
52 void | |
53 PhaseVocoderTimeStretcher::initialise() | |
54 { | |
55 std::cerr << "PhaseVocoderTimeStretcher::initialise" << std::endl; | |
56 | |
57 calculateParameters(); | |
58 | |
59 m_analysisWindow = new Window<float>(HanningWindow, m_wlen); | |
60 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen); | |
61 | |
62 m_prevPhase = new float *[m_channels]; | |
63 m_prevAdjustedPhase = new float *[m_channels]; | |
64 | |
65 m_prevTransientMag = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1)); | |
66 m_prevTransientScore = 0; | |
67 m_prevTransient = false; | |
68 | |
69 m_tempbuf = (float *)fftf_malloc(sizeof(float) * m_wlen); | |
70 | |
71 m_time = new float *[m_channels]; | |
72 m_freq = new fftf_complex *[m_channels]; | |
73 m_plan = new fftf_plan[m_channels]; | |
74 m_iplan = new fftf_plan[m_channels]; | |
75 | |
76 m_inbuf = new RingBuffer<float> *[m_channels]; | |
77 m_outbuf = new RingBuffer<float> *[m_channels]; | |
78 m_mashbuf = new float *[m_channels]; | |
79 | |
80 m_modulationbuf = (float *)fftf_malloc(sizeof(float) * m_wlen); | |
81 | |
82 for (size_t c = 0; c < m_channels; ++c) { | |
83 | |
84 m_prevPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1)); | |
85 m_prevAdjustedPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1)); | |
86 | |
87 m_time[c] = (float *)fftf_malloc(sizeof(float) * m_wlen); | |
88 m_freq[c] = (fftf_complex *)fftf_malloc(sizeof(fftf_complex) * | |
89 (m_wlen / 2 + 1)); | |
90 | |
91 m_plan[c] = fftf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_MEASURE); | |
92 m_iplan[c] = fftf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_MEASURE); | |
93 | |
94 m_outbuf[c] = new RingBuffer<float> | |
95 ((m_maxOutputBlockSize + m_wlen) * 2); | |
96 m_inbuf[c] = new RingBuffer<float> | |
97 (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen); | |
98 | |
99 std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl; | |
100 | |
101 | |
102 m_mashbuf[c] = (float *)fftf_malloc(sizeof(float) * m_wlen); | |
103 | |
104 for (size_t i = 0; i < m_wlen; ++i) { | |
105 m_mashbuf[c][i] = 0.0; | |
106 } | |
107 | |
108 for (size_t i = 0; i <= m_wlen/2; ++i) { | |
109 m_prevPhase[c][i] = 0.0; | |
110 m_prevAdjustedPhase[c][i] = 0.0; | |
111 } | |
112 } | |
113 | |
114 for (size_t i = 0; i < m_wlen; ++i) { | |
115 m_modulationbuf[i] = 0.0; | |
116 } | |
117 | |
118 for (size_t i = 0; i <= m_wlen/2; ++i) { | |
119 m_prevTransientMag[i] = 0.0; | |
120 } | |
121 } | |
122 | |
123 void | |
124 PhaseVocoderTimeStretcher::calculateParameters() | |
125 { | |
126 std::cerr << "PhaseVocoderTimeStretcher::calculateParameters" << std::endl; | |
127 | |
128 m_wlen = 1024; | |
129 | |
130 //!!! In transient sharpening mode, we need to pick the window | |
131 //length so as to be more or less fixed in audio duration (i.e. we | |
132 //need to exploit the sample rate) | |
133 | |
134 //!!! have to work out the relationship between wlen and transient | |
135 //threshold | |
136 | |
137 if (m_ratio < 1) { | |
138 if (m_ratio < 0.4) { | |
139 m_n1 = 1024; | |
140 m_wlen = 2048; | |
141 } else if (m_ratio < 0.8) { | |
142 m_n1 = 512; | |
143 } else { | |
144 m_n1 = 256; | |
145 } | |
146 if (shouldSharpen()) { | |
147 m_wlen = 2048; | |
148 } | |
149 m_n2 = lrintf(m_n1 * m_ratio); | |
150 } else { | |
151 if (m_ratio > 2) { | |
152 m_n2 = 512; | |
153 m_wlen = 4096; | |
154 } else if (m_ratio > 1.6) { | |
155 m_n2 = 384; | |
156 m_wlen = 2048; | |
157 } else { | |
158 m_n2 = 256; | |
159 } | |
160 if (shouldSharpen()) { | |
161 if (m_wlen < 2048) m_wlen = 2048; | |
162 } | |
163 m_n1 = lrintf(m_n2 / m_ratio); | |
164 if (m_n1 == 0) { | |
165 m_n1 = 1; | |
166 m_n2 = lrintf(m_ratio); | |
167 } | |
168 } | |
169 | |
170 m_transientThreshold = lrintf(m_wlen / 4.5); | |
171 | |
172 m_totalCount = 0; | |
173 m_transientCount = 0; | |
174 m_n2sum = 0; | |
175 | |
176 | |
177 std::cerr << "PhaseVocoderTimeStretcher: channels = " << m_channels | |
178 << ", ratio = " << m_ratio | |
179 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = " | |
180 << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl; | |
181 // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl; | |
182 } | |
183 | |
184 void | |
185 PhaseVocoderTimeStretcher::cleanup() | |
186 { | |
187 std::cerr << "PhaseVocoderTimeStretcher::cleanup" << std::endl; | |
188 | |
189 for (size_t c = 0; c < m_channels; ++c) { | |
190 | |
191 fftf_destroy_plan(m_plan[c]); | |
192 fftf_destroy_plan(m_iplan[c]); | |
193 | |
194 fftf_free(m_time[c]); | |
195 fftf_free(m_freq[c]); | |
196 | |
197 fftf_free(m_mashbuf[c]); | |
198 fftf_free(m_prevPhase[c]); | |
199 fftf_free(m_prevAdjustedPhase[c]); | |
200 | |
201 delete m_inbuf[c]; | |
202 delete m_outbuf[c]; | |
203 } | |
204 | |
205 fftf_free(m_tempbuf); | |
206 fftf_free(m_modulationbuf); | |
207 fftf_free(m_prevTransientMag); | |
208 | |
209 delete[] m_prevPhase; | |
210 delete[] m_prevAdjustedPhase; | |
211 delete[] m_inbuf; | |
212 delete[] m_outbuf; | |
213 delete[] m_mashbuf; | |
214 delete[] m_time; | |
215 delete[] m_freq; | |
216 delete[] m_plan; | |
217 delete[] m_iplan; | |
218 | |
219 delete m_analysisWindow; | |
220 delete m_synthesisWindow; | |
221 } | |
222 | |
223 void | |
224 PhaseVocoderTimeStretcher::setRatio(float ratio) | |
225 { | |
226 QMutexLocker locker(m_mutex); | |
227 | |
228 size_t formerWlen = m_wlen; | |
229 m_ratio = ratio; | |
230 | |
231 std::cerr << "PhaseVocoderTimeStretcher::setRatio: new ratio " << ratio | |
232 << std::endl; | |
233 | |
234 calculateParameters(); | |
235 | |
236 if (m_wlen == formerWlen) { | |
237 | |
238 // This is the only container whose size depends on m_ratio | |
239 | |
240 RingBuffer<float> **newin = new RingBuffer<float> *[m_channels]; | |
241 | |
242 size_t formerSize = m_inbuf[0]->getSize(); | |
243 size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen; | |
244 | |
245 std::cerr << "resizing inbuf from " << formerSize << " to " | |
246 << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl; | |
247 | |
248 if (formerSize != newSize) { | |
249 | |
250 size_t ready = m_inbuf[0]->getReadSpace(); | |
251 | |
252 for (size_t c = 0; c < m_channels; ++c) { | |
253 newin[c] = new RingBuffer<float>(newSize); | |
254 } | |
255 | |
256 if (ready > 0) { | |
257 | |
258 size_t copy = std::min(ready, newSize); | |
259 float *tmp = new float[ready]; | |
260 | |
261 for (size_t c = 0; c < m_channels; ++c) { | |
262 m_inbuf[c]->read(tmp, ready); | |
263 newin[c]->write(tmp + ready - copy, copy); | |
264 } | |
265 | |
266 delete[] tmp; | |
267 } | |
268 | |
269 for (size_t c = 0; c < m_channels; ++c) { | |
270 delete m_inbuf[c]; | |
271 } | |
272 | |
273 delete[] m_inbuf; | |
274 m_inbuf = newin; | |
275 } | |
276 | |
277 } else { | |
278 | |
279 std::cerr << "wlen changed" << std::endl; | |
280 cleanup(); | |
281 initialise(); | |
282 } | |
283 } | |
284 | |
285 size_t | |
286 PhaseVocoderTimeStretcher::getProcessingLatency() const | |
287 { | |
288 return getWindowSize() - getInputIncrement(); | |
289 } | |
290 | |
291 size_t | |
292 PhaseVocoderTimeStretcher::getRequiredInputSamples() const | |
293 { | |
294 QMutexLocker locker(m_mutex); | |
295 | |
296 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0; | |
297 return m_wlen - m_inbuf[0]->getReadSpace(); | |
298 } | |
299 | |
300 void | |
301 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples) | |
302 { | |
303 QMutexLocker locker(m_mutex); | |
304 | |
305 // We need to add samples from input to our internal buffer. When | |
306 // we have m_windowSize samples in the buffer, we can process it, | |
307 // move the samples back by m_n1 and write the output onto our | |
308 // internal output buffer. If we have (samples * ratio) samples | |
309 // in that, we can write m_n2 of them back to output and return | |
310 // (otherwise we have to write zeroes). | |
311 | |
312 // When we process, we write m_wlen to our fixed output buffer | |
313 // (m_mashbuf). We then pull out the first m_n2 samples from that | |
314 // buffer, push them into the output ring buffer, and shift | |
315 // m_mashbuf left by that amount. | |
316 | |
317 // The processing latency is then m_wlen - m_n2. | |
318 | |
319 size_t consumed = 0; | |
320 | |
321 while (consumed < samples) { | |
322 | |
323 size_t writable = m_inbuf[0]->getWriteSpace(); | |
324 writable = std::min(writable, samples - consumed); | |
325 | |
326 if (writable == 0) { | |
327 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
328 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl; | |
329 #endif | |
330 if (m_inbuf[0]->getReadSpace() < m_wlen || | |
331 m_outbuf[0]->getWriteSpace() < m_n2) { | |
332 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl; | |
333 break; | |
334 } | |
335 } else { | |
336 | |
337 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
338 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; | |
339 #endif | |
340 | |
341 for (size_t c = 0; c < m_channels; ++c) { | |
342 m_inbuf[c]->write(input[c] + consumed, writable); | |
343 } | |
344 consumed += writable; | |
345 } | |
346 | |
347 while (m_inbuf[0]->getReadSpace() >= m_wlen && | |
348 m_outbuf[0]->getWriteSpace() >= m_n2) { | |
349 | |
350 // We know we have at least m_wlen samples available | |
351 // in m_inbuf. We need to peek m_wlen of them for | |
352 // processing, and then read m_n1 to advance the read | |
353 // pointer. | |
354 | |
355 for (size_t c = 0; c < m_channels; ++c) { | |
356 | |
357 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen); | |
358 assert(got == m_wlen); | |
359 | |
360 analyseBlock(c, m_tempbuf); | |
361 } | |
362 | |
363 bool transient = false; | |
364 if (shouldSharpen()) transient = isTransient(); | |
365 | |
366 size_t n2 = m_n2; | |
367 | |
368 if (transient) { | |
369 n2 = m_n1; | |
370 } | |
371 | |
372 ++m_totalCount; | |
373 if (transient) ++m_transientCount; | |
374 m_n2sum += n2; | |
375 | |
376 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl; | |
377 | |
378 if (m_totalCount > 50 && m_transientCount < m_totalCount) { | |
379 | |
380 int fixed = lrintf(m_transientCount * m_n1); | |
381 | |
382 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio); | |
383 int idealSquashy = idealTotal - fixed; | |
384 | |
385 int squashyCount = m_totalCount - m_transientCount; | |
386 | |
387 n2 = lrintf(idealSquashy / squashyCount); | |
388 | |
389 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
390 if (n2 != m_n2) { | |
391 std::cerr << m_n2 << " -> " << n2 << std::endl; | |
392 } | |
393 #endif | |
394 } | |
395 | |
396 for (size_t c = 0; c < m_channels; ++c) { | |
397 | |
398 synthesiseBlock(c, m_mashbuf[c], | |
399 c == 0 ? m_modulationbuf : 0, | |
400 m_prevTransient ? m_n1 : m_n2); | |
401 | |
402 | |
403 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
404 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; | |
405 #endif | |
406 m_inbuf[c]->skip(m_n1); | |
407 | |
408 for (size_t i = 0; i < n2; ++i) { | |
409 if (m_modulationbuf[i] > 0.f) { | |
410 m_mashbuf[c][i] /= m_modulationbuf[i]; | |
411 } | |
412 } | |
413 | |
414 m_outbuf[c]->write(m_mashbuf[c], n2); | |
415 | |
416 for (size_t i = 0; i < m_wlen - n2; ++i) { | |
417 m_mashbuf[c][i] = m_mashbuf[c][i + n2]; | |
418 } | |
419 | |
420 for (size_t i = m_wlen - n2; i < m_wlen; ++i) { | |
421 m_mashbuf[c][i] = 0.0f; | |
422 } | |
423 } | |
424 | |
425 m_prevTransient = transient; | |
426 | |
427 for (size_t i = 0; i < m_wlen - n2; ++i) { | |
428 m_modulationbuf[i] = m_modulationbuf[i + n2]; | |
429 } | |
430 | |
431 for (size_t i = m_wlen - n2; i < m_wlen; ++i) { | |
432 m_modulationbuf[i] = 0.0f; | |
433 } | |
434 | |
435 if (!transient) m_n2 = n2; | |
436 } | |
437 | |
438 | |
439 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
440 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl; | |
441 #endif | |
442 } | |
443 | |
444 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
445 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl; | |
446 #endif | |
447 | |
448 // std::cerr << "ratio: nominal: " << getRatio() << " actual: " | |
449 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl; | |
450 } | |
451 | |
452 size_t | |
453 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const | |
454 { | |
455 QMutexLocker locker(m_mutex); | |
456 | |
457 return m_outbuf[0]->getReadSpace(); | |
458 } | |
459 | |
460 void | |
461 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples) | |
462 { | |
463 QMutexLocker locker(m_mutex); | |
464 | |
465 if (m_outbuf[0]->getReadSpace() < samples) { | |
466 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl; | |
467 size_t fill = samples - m_outbuf[0]->getReadSpace(); | |
468 for (size_t c = 0; c < m_channels; ++c) { | |
469 for (size_t i = 0; i < fill; ++i) { | |
470 output[c][i] = 0.0; | |
471 } | |
472 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace()); | |
473 } | |
474 } else { | |
475 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
476 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl; | |
477 #endif | |
478 for (size_t c = 0; c < m_channels; ++c) { | |
479 m_outbuf[c]->read(output[c], samples); | |
480 } | |
481 } | |
482 | |
483 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
484 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl; | |
485 #endif | |
486 } | |
487 | |
488 void | |
489 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf) | |
490 { | |
491 size_t i; | |
492 | |
493 // buf contains m_wlen samples | |
494 | |
495 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER | |
496 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl; | |
497 #endif | |
498 | |
499 m_analysisWindow->cut(buf); | |
500 | |
501 for (i = 0; i < m_wlen/2; ++i) { | |
502 float temp = buf[i]; | |
503 buf[i] = buf[i + m_wlen/2]; | |
504 buf[i + m_wlen/2] = temp; | |
505 } | |
506 | |
507 for (i = 0; i < m_wlen; ++i) { | |
508 m_time[c][i] = buf[i]; | |
509 } | |
510 | |
511 fftf_execute(m_plan[c]); // m_time -> m_freq | |
512 } | |
513 | |
514 bool | |
515 PhaseVocoderTimeStretcher::isTransient() | |
516 { | |
517 int count = 0; | |
518 | |
519 for (size_t i = 0; i <= m_wlen/2; ++i) { | |
520 | |
521 float real = 0.f, imag = 0.f; | |
522 | |
523 for (size_t c = 0; c < m_channels; ++c) { | |
524 real += m_freq[c][i][0]; | |
525 imag += m_freq[c][i][1]; | |
526 } | |
527 | |
528 float sqrmag = (real * real + imag * imag); | |
529 | |
530 if (m_prevTransientMag[i] > 0.f) { | |
531 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]); | |
532 if (diff > 3.f) ++count; | |
533 } | |
534 | |
535 m_prevTransientMag[i] = sqrmag; | |
536 } | |
537 | |
538 bool isTransient = false; | |
539 | |
540 // if (count > m_transientThreshold && | |
541 // count > m_prevTransientScore * 1.2) { | |
542 if (count > m_prevTransientScore && | |
543 count > m_transientThreshold && | |
544 count - m_prevTransientScore > int(m_wlen) / 20) { | |
545 isTransient = true; | |
546 | |
547 | |
548 // std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ")" << std::endl; | |
549 // } else { | |
550 // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl; | |
551 } | |
552 | |
553 m_prevTransientScore = count; | |
554 | |
555 return isTransient; | |
556 } | |
557 | |
558 void | |
559 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c, | |
560 float *out, | |
561 float *modulation, | |
562 size_t lastStep) | |
563 { | |
564 bool unchanged = (lastStep == m_n1); | |
565 | |
566 for (size_t i = 0; i <= m_wlen/2; ++i) { | |
567 | |
568 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0])); | |
569 float adjustedPhase = phase; | |
570 | |
571 if (!unchanged) { | |
572 | |
573 float omega = (2 * M_PI * m_n1 * i) / m_wlen; | |
574 | |
575 float expectedPhase = m_prevPhase[c][i] + omega; | |
576 | |
577 float phaseError = princargf(phase - expectedPhase); | |
578 | |
579 float phaseIncrement = (omega + phaseError) / m_n1; | |
580 | |
581 adjustedPhase = m_prevAdjustedPhase[c][i] + | |
582 lastStep * phaseIncrement; | |
583 | |
584 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] + | |
585 m_freq[c][i][1] * m_freq[c][i][1]); | |
586 | |
587 float real = mag * cosf(adjustedPhase); | |
588 float imag = mag * sinf(adjustedPhase); | |
589 m_freq[c][i][0] = real; | |
590 m_freq[c][i][1] = imag; | |
591 } | |
592 | |
593 m_prevPhase[c][i] = phase; | |
594 m_prevAdjustedPhase[c][i] = adjustedPhase; | |
595 } | |
596 | |
597 fftf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft | |
598 | |
599 for (size_t i = 0; i < m_wlen/2; ++i) { | |
600 float temp = m_time[c][i]; | |
601 m_time[c][i] = m_time[c][i + m_wlen/2]; | |
602 m_time[c][i + m_wlen/2] = temp; | |
603 } | |
604 | |
605 for (size_t i = 0; i < m_wlen; ++i) { | |
606 m_time[c][i] = m_time[c][i] / m_wlen; | |
607 } | |
608 | |
609 m_synthesisWindow->cut(m_time[c]); | |
610 | |
611 for (size_t i = 0; i < m_wlen; ++i) { | |
612 out[i] += m_time[c][i]; | |
613 } | |
614 | |
615 if (modulation) { | |
616 | |
617 float area = m_analysisWindow->getArea(); | |
618 | |
619 for (size_t i = 0; i < m_wlen; ++i) { | |
620 float val = m_synthesisWindow->getValue(i); | |
621 modulation[i] += val * area; | |
622 } | |
623 } | |
624 } | |
625 | |
626 |