annotate audioio/PhaseVocoderTimeStretcher.cpp @ 43:3c5756fb6a68

* Move some things around to facilitate plundering libraries for other applications without needing to duplicate so much code. sv/osc -> data/osc sv/audioio -> audioio sv/transform -> plugin/transform sv/document -> document (will rename to framework in next commit)
author Chris Cannam
date Wed, 24 Oct 2007 16:34:31 +0000
parents
children 0ffab5d7e3e1
rev   line source
Chris@43 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@43 2
Chris@43 3 /*
Chris@43 4 Sonic Visualiser
Chris@43 5 An audio file viewer and annotation editor.
Chris@43 6 Centre for Digital Music, Queen Mary, University of London.
Chris@43 7 This file copyright 2006 Chris Cannam and QMUL.
Chris@43 8
Chris@43 9 This program is free software; you can redistribute it and/or
Chris@43 10 modify it under the terms of the GNU General Public License as
Chris@43 11 published by the Free Software Foundation; either version 2 of the
Chris@43 12 License, or (at your option) any later version. See the file
Chris@43 13 COPYING included with this distribution for more information.
Chris@43 14 */
Chris@43 15
Chris@43 16 #include "PhaseVocoderTimeStretcher.h"
Chris@43 17
Chris@43 18 #include <iostream>
Chris@43 19 #include <cassert>
Chris@43 20
Chris@43 21 #include <QMutexLocker>
Chris@43 22
Chris@43 23 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
Chris@43 24
Chris@43 25 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate,
Chris@43 26 size_t channels,
Chris@43 27 float ratio,
Chris@43 28 bool sharpen,
Chris@43 29 size_t maxOutputBlockSize) :
Chris@43 30 m_sampleRate(sampleRate),
Chris@43 31 m_channels(channels),
Chris@43 32 m_maxOutputBlockSize(maxOutputBlockSize),
Chris@43 33 m_ratio(ratio),
Chris@43 34 m_sharpen(sharpen),
Chris@43 35 m_totalCount(0),
Chris@43 36 m_transientCount(0),
Chris@43 37 m_n2sum(0),
Chris@43 38 m_mutex(new QMutex())
Chris@43 39 {
Chris@43 40 initialise();
Chris@43 41 }
Chris@43 42
Chris@43 43 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
Chris@43 44 {
Chris@43 45 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
Chris@43 46
Chris@43 47 cleanup();
Chris@43 48
Chris@43 49 delete m_mutex;
Chris@43 50 }
Chris@43 51
Chris@43 52 void
Chris@43 53 PhaseVocoderTimeStretcher::initialise()
Chris@43 54 {
Chris@43 55 std::cerr << "PhaseVocoderTimeStretcher::initialise" << std::endl;
Chris@43 56
Chris@43 57 calculateParameters();
Chris@43 58
Chris@43 59 m_analysisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@43 60 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@43 61
Chris@43 62 m_prevPhase = new float *[m_channels];
Chris@43 63 m_prevAdjustedPhase = new float *[m_channels];
Chris@43 64
Chris@43 65 m_prevTransientMag = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 66 m_prevTransientScore = 0;
Chris@43 67 m_prevTransient = false;
Chris@43 68
Chris@43 69 m_tempbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 70
Chris@43 71 m_time = new float *[m_channels];
Chris@43 72 m_freq = new fftf_complex *[m_channels];
Chris@43 73 m_plan = new fftf_plan[m_channels];
Chris@43 74 m_iplan = new fftf_plan[m_channels];
Chris@43 75
Chris@43 76 m_inbuf = new RingBuffer<float> *[m_channels];
Chris@43 77 m_outbuf = new RingBuffer<float> *[m_channels];
Chris@43 78 m_mashbuf = new float *[m_channels];
Chris@43 79
Chris@43 80 m_modulationbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 81
Chris@43 82 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 83
Chris@43 84 m_prevPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 85 m_prevAdjustedPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@43 86
Chris@43 87 m_time[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 88 m_freq[c] = (fftf_complex *)fftf_malloc(sizeof(fftf_complex) *
Chris@43 89 (m_wlen / 2 + 1));
Chris@43 90
Chris@43 91 m_plan[c] = fftf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_MEASURE);
Chris@43 92 m_iplan[c] = fftf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_MEASURE);
Chris@43 93
Chris@43 94 m_outbuf[c] = new RingBuffer<float>
Chris@43 95 ((m_maxOutputBlockSize + m_wlen) * 2);
Chris@43 96 m_inbuf[c] = new RingBuffer<float>
Chris@43 97 (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen);
Chris@43 98
Chris@43 99 std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@43 100
Chris@43 101
Chris@43 102 m_mashbuf[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@43 103
Chris@43 104 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 105 m_mashbuf[c][i] = 0.0;
Chris@43 106 }
Chris@43 107
Chris@43 108 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 109 m_prevPhase[c][i] = 0.0;
Chris@43 110 m_prevAdjustedPhase[c][i] = 0.0;
Chris@43 111 }
Chris@43 112 }
Chris@43 113
Chris@43 114 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 115 m_modulationbuf[i] = 0.0;
Chris@43 116 }
Chris@43 117
Chris@43 118 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 119 m_prevTransientMag[i] = 0.0;
Chris@43 120 }
Chris@43 121 }
Chris@43 122
Chris@43 123 void
Chris@43 124 PhaseVocoderTimeStretcher::calculateParameters()
Chris@43 125 {
Chris@43 126 std::cerr << "PhaseVocoderTimeStretcher::calculateParameters" << std::endl;
Chris@43 127
Chris@43 128 m_wlen = 1024;
Chris@43 129
Chris@43 130 //!!! In transient sharpening mode, we need to pick the window
Chris@43 131 //length so as to be more or less fixed in audio duration (i.e. we
Chris@43 132 //need to exploit the sample rate)
Chris@43 133
Chris@43 134 //!!! have to work out the relationship between wlen and transient
Chris@43 135 //threshold
Chris@43 136
Chris@43 137 if (m_ratio < 1) {
Chris@43 138 if (m_ratio < 0.4) {
Chris@43 139 m_n1 = 1024;
Chris@43 140 m_wlen = 2048;
Chris@43 141 } else if (m_ratio < 0.8) {
Chris@43 142 m_n1 = 512;
Chris@43 143 } else {
Chris@43 144 m_n1 = 256;
Chris@43 145 }
Chris@43 146 if (shouldSharpen()) {
Chris@43 147 m_wlen = 2048;
Chris@43 148 }
Chris@43 149 m_n2 = lrintf(m_n1 * m_ratio);
Chris@43 150 } else {
Chris@43 151 if (m_ratio > 2) {
Chris@43 152 m_n2 = 512;
Chris@43 153 m_wlen = 4096;
Chris@43 154 } else if (m_ratio > 1.6) {
Chris@43 155 m_n2 = 384;
Chris@43 156 m_wlen = 2048;
Chris@43 157 } else {
Chris@43 158 m_n2 = 256;
Chris@43 159 }
Chris@43 160 if (shouldSharpen()) {
Chris@43 161 if (m_wlen < 2048) m_wlen = 2048;
Chris@43 162 }
Chris@43 163 m_n1 = lrintf(m_n2 / m_ratio);
Chris@43 164 if (m_n1 == 0) {
Chris@43 165 m_n1 = 1;
Chris@43 166 m_n2 = lrintf(m_ratio);
Chris@43 167 }
Chris@43 168 }
Chris@43 169
Chris@43 170 m_transientThreshold = lrintf(m_wlen / 4.5);
Chris@43 171
Chris@43 172 m_totalCount = 0;
Chris@43 173 m_transientCount = 0;
Chris@43 174 m_n2sum = 0;
Chris@43 175
Chris@43 176
Chris@43 177 std::cerr << "PhaseVocoderTimeStretcher: channels = " << m_channels
Chris@43 178 << ", ratio = " << m_ratio
Chris@43 179 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
Chris@43 180 << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl;
Chris@43 181 // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
Chris@43 182 }
Chris@43 183
Chris@43 184 void
Chris@43 185 PhaseVocoderTimeStretcher::cleanup()
Chris@43 186 {
Chris@43 187 std::cerr << "PhaseVocoderTimeStretcher::cleanup" << std::endl;
Chris@43 188
Chris@43 189 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 190
Chris@43 191 fftf_destroy_plan(m_plan[c]);
Chris@43 192 fftf_destroy_plan(m_iplan[c]);
Chris@43 193
Chris@43 194 fftf_free(m_time[c]);
Chris@43 195 fftf_free(m_freq[c]);
Chris@43 196
Chris@43 197 fftf_free(m_mashbuf[c]);
Chris@43 198 fftf_free(m_prevPhase[c]);
Chris@43 199 fftf_free(m_prevAdjustedPhase[c]);
Chris@43 200
Chris@43 201 delete m_inbuf[c];
Chris@43 202 delete m_outbuf[c];
Chris@43 203 }
Chris@43 204
Chris@43 205 fftf_free(m_tempbuf);
Chris@43 206 fftf_free(m_modulationbuf);
Chris@43 207 fftf_free(m_prevTransientMag);
Chris@43 208
Chris@43 209 delete[] m_prevPhase;
Chris@43 210 delete[] m_prevAdjustedPhase;
Chris@43 211 delete[] m_inbuf;
Chris@43 212 delete[] m_outbuf;
Chris@43 213 delete[] m_mashbuf;
Chris@43 214 delete[] m_time;
Chris@43 215 delete[] m_freq;
Chris@43 216 delete[] m_plan;
Chris@43 217 delete[] m_iplan;
Chris@43 218
Chris@43 219 delete m_analysisWindow;
Chris@43 220 delete m_synthesisWindow;
Chris@43 221 }
Chris@43 222
Chris@43 223 void
Chris@43 224 PhaseVocoderTimeStretcher::setRatio(float ratio)
Chris@43 225 {
Chris@43 226 QMutexLocker locker(m_mutex);
Chris@43 227
Chris@43 228 size_t formerWlen = m_wlen;
Chris@43 229 m_ratio = ratio;
Chris@43 230
Chris@43 231 std::cerr << "PhaseVocoderTimeStretcher::setRatio: new ratio " << ratio
Chris@43 232 << std::endl;
Chris@43 233
Chris@43 234 calculateParameters();
Chris@43 235
Chris@43 236 if (m_wlen == formerWlen) {
Chris@43 237
Chris@43 238 // This is the only container whose size depends on m_ratio
Chris@43 239
Chris@43 240 RingBuffer<float> **newin = new RingBuffer<float> *[m_channels];
Chris@43 241
Chris@43 242 size_t formerSize = m_inbuf[0]->getSize();
Chris@43 243 size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen;
Chris@43 244
Chris@43 245 std::cerr << "resizing inbuf from " << formerSize << " to "
Chris@43 246 << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@43 247
Chris@43 248 if (formerSize != newSize) {
Chris@43 249
Chris@43 250 size_t ready = m_inbuf[0]->getReadSpace();
Chris@43 251
Chris@43 252 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 253 newin[c] = new RingBuffer<float>(newSize);
Chris@43 254 }
Chris@43 255
Chris@43 256 if (ready > 0) {
Chris@43 257
Chris@43 258 size_t copy = std::min(ready, newSize);
Chris@43 259 float *tmp = new float[ready];
Chris@43 260
Chris@43 261 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 262 m_inbuf[c]->read(tmp, ready);
Chris@43 263 newin[c]->write(tmp + ready - copy, copy);
Chris@43 264 }
Chris@43 265
Chris@43 266 delete[] tmp;
Chris@43 267 }
Chris@43 268
Chris@43 269 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 270 delete m_inbuf[c];
Chris@43 271 }
Chris@43 272
Chris@43 273 delete[] m_inbuf;
Chris@43 274 m_inbuf = newin;
Chris@43 275 }
Chris@43 276
Chris@43 277 } else {
Chris@43 278
Chris@43 279 std::cerr << "wlen changed" << std::endl;
Chris@43 280 cleanup();
Chris@43 281 initialise();
Chris@43 282 }
Chris@43 283 }
Chris@43 284
Chris@43 285 size_t
Chris@43 286 PhaseVocoderTimeStretcher::getProcessingLatency() const
Chris@43 287 {
Chris@43 288 return getWindowSize() - getInputIncrement();
Chris@43 289 }
Chris@43 290
Chris@43 291 size_t
Chris@43 292 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
Chris@43 293 {
Chris@43 294 QMutexLocker locker(m_mutex);
Chris@43 295
Chris@43 296 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
Chris@43 297 return m_wlen - m_inbuf[0]->getReadSpace();
Chris@43 298 }
Chris@43 299
Chris@43 300 void
Chris@43 301 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
Chris@43 302 {
Chris@43 303 QMutexLocker locker(m_mutex);
Chris@43 304
Chris@43 305 // We need to add samples from input to our internal buffer. When
Chris@43 306 // we have m_windowSize samples in the buffer, we can process it,
Chris@43 307 // move the samples back by m_n1 and write the output onto our
Chris@43 308 // internal output buffer. If we have (samples * ratio) samples
Chris@43 309 // in that, we can write m_n2 of them back to output and return
Chris@43 310 // (otherwise we have to write zeroes).
Chris@43 311
Chris@43 312 // When we process, we write m_wlen to our fixed output buffer
Chris@43 313 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@43 314 // buffer, push them into the output ring buffer, and shift
Chris@43 315 // m_mashbuf left by that amount.
Chris@43 316
Chris@43 317 // The processing latency is then m_wlen - m_n2.
Chris@43 318
Chris@43 319 size_t consumed = 0;
Chris@43 320
Chris@43 321 while (consumed < samples) {
Chris@43 322
Chris@43 323 size_t writable = m_inbuf[0]->getWriteSpace();
Chris@43 324 writable = std::min(writable, samples - consumed);
Chris@43 325
Chris@43 326 if (writable == 0) {
Chris@43 327 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 328 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl;
Chris@43 329 #endif
Chris@43 330 if (m_inbuf[0]->getReadSpace() < m_wlen ||
Chris@43 331 m_outbuf[0]->getWriteSpace() < m_n2) {
Chris@43 332 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl;
Chris@43 333 break;
Chris@43 334 }
Chris@43 335 } else {
Chris@43 336
Chris@43 337 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 338 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@43 339 #endif
Chris@43 340
Chris@43 341 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 342 m_inbuf[c]->write(input[c] + consumed, writable);
Chris@43 343 }
Chris@43 344 consumed += writable;
Chris@43 345 }
Chris@43 346
Chris@43 347 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
Chris@43 348 m_outbuf[0]->getWriteSpace() >= m_n2) {
Chris@43 349
Chris@43 350 // We know we have at least m_wlen samples available
Chris@43 351 // in m_inbuf. We need to peek m_wlen of them for
Chris@43 352 // processing, and then read m_n1 to advance the read
Chris@43 353 // pointer.
Chris@43 354
Chris@43 355 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 356
Chris@43 357 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
Chris@43 358 assert(got == m_wlen);
Chris@43 359
Chris@43 360 analyseBlock(c, m_tempbuf);
Chris@43 361 }
Chris@43 362
Chris@43 363 bool transient = false;
Chris@43 364 if (shouldSharpen()) transient = isTransient();
Chris@43 365
Chris@43 366 size_t n2 = m_n2;
Chris@43 367
Chris@43 368 if (transient) {
Chris@43 369 n2 = m_n1;
Chris@43 370 }
Chris@43 371
Chris@43 372 ++m_totalCount;
Chris@43 373 if (transient) ++m_transientCount;
Chris@43 374 m_n2sum += n2;
Chris@43 375
Chris@43 376 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl;
Chris@43 377
Chris@43 378 if (m_totalCount > 50 && m_transientCount < m_totalCount) {
Chris@43 379
Chris@43 380 int fixed = lrintf(m_transientCount * m_n1);
Chris@43 381
Chris@43 382 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio);
Chris@43 383 int idealSquashy = idealTotal - fixed;
Chris@43 384
Chris@43 385 int squashyCount = m_totalCount - m_transientCount;
Chris@43 386
Chris@43 387 n2 = lrintf(idealSquashy / squashyCount);
Chris@43 388
Chris@43 389 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 390 if (n2 != m_n2) {
Chris@43 391 std::cerr << m_n2 << " -> " << n2 << std::endl;
Chris@43 392 }
Chris@43 393 #endif
Chris@43 394 }
Chris@43 395
Chris@43 396 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 397
Chris@43 398 synthesiseBlock(c, m_mashbuf[c],
Chris@43 399 c == 0 ? m_modulationbuf : 0,
Chris@43 400 m_prevTransient ? m_n1 : m_n2);
Chris@43 401
Chris@43 402
Chris@43 403 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 404 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@43 405 #endif
Chris@43 406 m_inbuf[c]->skip(m_n1);
Chris@43 407
Chris@43 408 for (size_t i = 0; i < n2; ++i) {
Chris@43 409 if (m_modulationbuf[i] > 0.f) {
Chris@43 410 m_mashbuf[c][i] /= m_modulationbuf[i];
Chris@43 411 }
Chris@43 412 }
Chris@43 413
Chris@43 414 m_outbuf[c]->write(m_mashbuf[c], n2);
Chris@43 415
Chris@43 416 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@43 417 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
Chris@43 418 }
Chris@43 419
Chris@43 420 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@43 421 m_mashbuf[c][i] = 0.0f;
Chris@43 422 }
Chris@43 423 }
Chris@43 424
Chris@43 425 m_prevTransient = transient;
Chris@43 426
Chris@43 427 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@43 428 m_modulationbuf[i] = m_modulationbuf[i + n2];
Chris@43 429 }
Chris@43 430
Chris@43 431 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@43 432 m_modulationbuf[i] = 0.0f;
Chris@43 433 }
Chris@43 434
Chris@43 435 if (!transient) m_n2 = n2;
Chris@43 436 }
Chris@43 437
Chris@43 438
Chris@43 439 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 440 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
Chris@43 441 #endif
Chris@43 442 }
Chris@43 443
Chris@43 444 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 445 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
Chris@43 446 #endif
Chris@43 447
Chris@43 448 // std::cerr << "ratio: nominal: " << getRatio() << " actual: "
Chris@43 449 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
Chris@43 450 }
Chris@43 451
Chris@43 452 size_t
Chris@43 453 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
Chris@43 454 {
Chris@43 455 QMutexLocker locker(m_mutex);
Chris@43 456
Chris@43 457 return m_outbuf[0]->getReadSpace();
Chris@43 458 }
Chris@43 459
Chris@43 460 void
Chris@43 461 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
Chris@43 462 {
Chris@43 463 QMutexLocker locker(m_mutex);
Chris@43 464
Chris@43 465 if (m_outbuf[0]->getReadSpace() < samples) {
Chris@43 466 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
Chris@43 467 size_t fill = samples - m_outbuf[0]->getReadSpace();
Chris@43 468 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 469 for (size_t i = 0; i < fill; ++i) {
Chris@43 470 output[c][i] = 0.0;
Chris@43 471 }
Chris@43 472 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
Chris@43 473 }
Chris@43 474 } else {
Chris@43 475 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 476 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
Chris@43 477 #endif
Chris@43 478 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 479 m_outbuf[c]->read(output[c], samples);
Chris@43 480 }
Chris@43 481 }
Chris@43 482
Chris@43 483 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 484 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
Chris@43 485 #endif
Chris@43 486 }
Chris@43 487
Chris@43 488 void
Chris@43 489 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf)
Chris@43 490 {
Chris@43 491 size_t i;
Chris@43 492
Chris@43 493 // buf contains m_wlen samples
Chris@43 494
Chris@43 495 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@43 496 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
Chris@43 497 #endif
Chris@43 498
Chris@43 499 m_analysisWindow->cut(buf);
Chris@43 500
Chris@43 501 for (i = 0; i < m_wlen/2; ++i) {
Chris@43 502 float temp = buf[i];
Chris@43 503 buf[i] = buf[i + m_wlen/2];
Chris@43 504 buf[i + m_wlen/2] = temp;
Chris@43 505 }
Chris@43 506
Chris@43 507 for (i = 0; i < m_wlen; ++i) {
Chris@43 508 m_time[c][i] = buf[i];
Chris@43 509 }
Chris@43 510
Chris@43 511 fftf_execute(m_plan[c]); // m_time -> m_freq
Chris@43 512 }
Chris@43 513
Chris@43 514 bool
Chris@43 515 PhaseVocoderTimeStretcher::isTransient()
Chris@43 516 {
Chris@43 517 int count = 0;
Chris@43 518
Chris@43 519 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 520
Chris@43 521 float real = 0.f, imag = 0.f;
Chris@43 522
Chris@43 523 for (size_t c = 0; c < m_channels; ++c) {
Chris@43 524 real += m_freq[c][i][0];
Chris@43 525 imag += m_freq[c][i][1];
Chris@43 526 }
Chris@43 527
Chris@43 528 float sqrmag = (real * real + imag * imag);
Chris@43 529
Chris@43 530 if (m_prevTransientMag[i] > 0.f) {
Chris@43 531 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
Chris@43 532 if (diff > 3.f) ++count;
Chris@43 533 }
Chris@43 534
Chris@43 535 m_prevTransientMag[i] = sqrmag;
Chris@43 536 }
Chris@43 537
Chris@43 538 bool isTransient = false;
Chris@43 539
Chris@43 540 // if (count > m_transientThreshold &&
Chris@43 541 // count > m_prevTransientScore * 1.2) {
Chris@43 542 if (count > m_prevTransientScore &&
Chris@43 543 count > m_transientThreshold &&
Chris@43 544 count - m_prevTransientScore > int(m_wlen) / 20) {
Chris@43 545 isTransient = true;
Chris@43 546
Chris@43 547
Chris@43 548 // std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ")" << std::endl;
Chris@43 549 // } else {
Chris@43 550 // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl;
Chris@43 551 }
Chris@43 552
Chris@43 553 m_prevTransientScore = count;
Chris@43 554
Chris@43 555 return isTransient;
Chris@43 556 }
Chris@43 557
Chris@43 558 void
Chris@43 559 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c,
Chris@43 560 float *out,
Chris@43 561 float *modulation,
Chris@43 562 size_t lastStep)
Chris@43 563 {
Chris@43 564 bool unchanged = (lastStep == m_n1);
Chris@43 565
Chris@43 566 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@43 567
Chris@43 568 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
Chris@43 569 float adjustedPhase = phase;
Chris@43 570
Chris@43 571 if (!unchanged) {
Chris@43 572
Chris@43 573 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@43 574
Chris@43 575 float expectedPhase = m_prevPhase[c][i] + omega;
Chris@43 576
Chris@43 577 float phaseError = princargf(phase - expectedPhase);
Chris@43 578
Chris@43 579 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@43 580
Chris@43 581 adjustedPhase = m_prevAdjustedPhase[c][i] +
Chris@43 582 lastStep * phaseIncrement;
Chris@43 583
Chris@43 584 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
Chris@43 585 m_freq[c][i][1] * m_freq[c][i][1]);
Chris@43 586
Chris@43 587 float real = mag * cosf(adjustedPhase);
Chris@43 588 float imag = mag * sinf(adjustedPhase);
Chris@43 589 m_freq[c][i][0] = real;
Chris@43 590 m_freq[c][i][1] = imag;
Chris@43 591 }
Chris@43 592
Chris@43 593 m_prevPhase[c][i] = phase;
Chris@43 594 m_prevAdjustedPhase[c][i] = adjustedPhase;
Chris@43 595 }
Chris@43 596
Chris@43 597 fftf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
Chris@43 598
Chris@43 599 for (size_t i = 0; i < m_wlen/2; ++i) {
Chris@43 600 float temp = m_time[c][i];
Chris@43 601 m_time[c][i] = m_time[c][i + m_wlen/2];
Chris@43 602 m_time[c][i + m_wlen/2] = temp;
Chris@43 603 }
Chris@43 604
Chris@43 605 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 606 m_time[c][i] = m_time[c][i] / m_wlen;
Chris@43 607 }
Chris@43 608
Chris@43 609 m_synthesisWindow->cut(m_time[c]);
Chris@43 610
Chris@43 611 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 612 out[i] += m_time[c][i];
Chris@43 613 }
Chris@43 614
Chris@43 615 if (modulation) {
Chris@43 616
Chris@43 617 float area = m_analysisWindow->getArea();
Chris@43 618
Chris@43 619 for (size_t i = 0; i < m_wlen; ++i) {
Chris@43 620 float val = m_synthesisWindow->getValue(i);
Chris@43 621 modulation[i] += val * area;
Chris@43 622 }
Chris@43 623 }
Chris@43 624 }
Chris@43 625
Chris@43 626