cannam@89: /* adler32.c -- compute the Adler-32 checksum of a data stream cannam@89: * Copyright (C) 1995-2011 Mark Adler cannam@89: * For conditions of distribution and use, see copyright notice in zlib.h cannam@89: */ cannam@89: cannam@89: /* @(#) $Id$ */ cannam@89: cannam@89: #include "zutil.h" cannam@89: cannam@89: #define local static cannam@89: cannam@89: local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); cannam@89: cannam@89: #define BASE 65521 /* largest prime smaller than 65536 */ cannam@89: #define NMAX 5552 cannam@89: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ cannam@89: cannam@89: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} cannam@89: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); cannam@89: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); cannam@89: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); cannam@89: #define DO16(buf) DO8(buf,0); DO8(buf,8); cannam@89: cannam@89: /* use NO_DIVIDE if your processor does not do division in hardware -- cannam@89: try it both ways to see which is faster */ cannam@89: #ifdef NO_DIVIDE cannam@89: /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 cannam@89: (thank you to John Reiser for pointing this out) */ cannam@89: # define CHOP(a) \ cannam@89: do { \ cannam@89: unsigned long tmp = a >> 16; \ cannam@89: a &= 0xffffUL; \ cannam@89: a += (tmp << 4) - tmp; \ cannam@89: } while (0) cannam@89: # define MOD28(a) \ cannam@89: do { \ cannam@89: CHOP(a); \ cannam@89: if (a >= BASE) a -= BASE; \ cannam@89: } while (0) cannam@89: # define MOD(a) \ cannam@89: do { \ cannam@89: CHOP(a); \ cannam@89: MOD28(a); \ cannam@89: } while (0) cannam@89: # define MOD63(a) \ cannam@89: do { /* this assumes a is not negative */ \ cannam@89: z_off64_t tmp = a >> 32; \ cannam@89: a &= 0xffffffffL; \ cannam@89: a += (tmp << 8) - (tmp << 5) + tmp; \ cannam@89: tmp = a >> 16; \ cannam@89: a &= 0xffffL; \ cannam@89: a += (tmp << 4) - tmp; \ cannam@89: tmp = a >> 16; \ cannam@89: a &= 0xffffL; \ cannam@89: a += (tmp << 4) - tmp; \ cannam@89: if (a >= BASE) a -= BASE; \ cannam@89: } while (0) cannam@89: #else cannam@89: # define MOD(a) a %= BASE cannam@89: # define MOD28(a) a %= BASE cannam@89: # define MOD63(a) a %= BASE cannam@89: #endif cannam@89: cannam@89: /* ========================================================================= */ cannam@89: uLong ZEXPORT adler32(adler, buf, len) cannam@89: uLong adler; cannam@89: const Bytef *buf; cannam@89: uInt len; cannam@89: { cannam@89: unsigned long sum2; cannam@89: unsigned n; cannam@89: cannam@89: /* split Adler-32 into component sums */ cannam@89: sum2 = (adler >> 16) & 0xffff; cannam@89: adler &= 0xffff; cannam@89: cannam@89: /* in case user likes doing a byte at a time, keep it fast */ cannam@89: if (len == 1) { cannam@89: adler += buf[0]; cannam@89: if (adler >= BASE) cannam@89: adler -= BASE; cannam@89: sum2 += adler; cannam@89: if (sum2 >= BASE) cannam@89: sum2 -= BASE; cannam@89: return adler | (sum2 << 16); cannam@89: } cannam@89: cannam@89: /* initial Adler-32 value (deferred check for len == 1 speed) */ cannam@89: if (buf == Z_NULL) cannam@89: return 1L; cannam@89: cannam@89: /* in case short lengths are provided, keep it somewhat fast */ cannam@89: if (len < 16) { cannam@89: while (len--) { cannam@89: adler += *buf++; cannam@89: sum2 += adler; cannam@89: } cannam@89: if (adler >= BASE) cannam@89: adler -= BASE; cannam@89: MOD28(sum2); /* only added so many BASE's */ cannam@89: return adler | (sum2 << 16); cannam@89: } cannam@89: cannam@89: /* do length NMAX blocks -- requires just one modulo operation */ cannam@89: while (len >= NMAX) { cannam@89: len -= NMAX; cannam@89: n = NMAX / 16; /* NMAX is divisible by 16 */ cannam@89: do { cannam@89: DO16(buf); /* 16 sums unrolled */ cannam@89: buf += 16; cannam@89: } while (--n); cannam@89: MOD(adler); cannam@89: MOD(sum2); cannam@89: } cannam@89: cannam@89: /* do remaining bytes (less than NMAX, still just one modulo) */ cannam@89: if (len) { /* avoid modulos if none remaining */ cannam@89: while (len >= 16) { cannam@89: len -= 16; cannam@89: DO16(buf); cannam@89: buf += 16; cannam@89: } cannam@89: while (len--) { cannam@89: adler += *buf++; cannam@89: sum2 += adler; cannam@89: } cannam@89: MOD(adler); cannam@89: MOD(sum2); cannam@89: } cannam@89: cannam@89: /* return recombined sums */ cannam@89: return adler | (sum2 << 16); cannam@89: } cannam@89: cannam@89: /* ========================================================================= */ cannam@89: local uLong adler32_combine_(adler1, adler2, len2) cannam@89: uLong adler1; cannam@89: uLong adler2; cannam@89: z_off64_t len2; cannam@89: { cannam@89: unsigned long sum1; cannam@89: unsigned long sum2; cannam@89: unsigned rem; cannam@89: cannam@89: /* for negative len, return invalid adler32 as a clue for debugging */ cannam@89: if (len2 < 0) cannam@89: return 0xffffffffUL; cannam@89: cannam@89: /* the derivation of this formula is left as an exercise for the reader */ cannam@89: MOD63(len2); /* assumes len2 >= 0 */ cannam@89: rem = (unsigned)len2; cannam@89: sum1 = adler1 & 0xffff; cannam@89: sum2 = rem * sum1; cannam@89: MOD(sum2); cannam@89: sum1 += (adler2 & 0xffff) + BASE - 1; cannam@89: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; cannam@89: if (sum1 >= BASE) sum1 -= BASE; cannam@89: if (sum1 >= BASE) sum1 -= BASE; cannam@89: if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); cannam@89: if (sum2 >= BASE) sum2 -= BASE; cannam@89: return sum1 | (sum2 << 16); cannam@89: } cannam@89: cannam@89: /* ========================================================================= */ cannam@89: uLong ZEXPORT adler32_combine(adler1, adler2, len2) cannam@89: uLong adler1; cannam@89: uLong adler2; cannam@89: z_off_t len2; cannam@89: { cannam@89: return adler32_combine_(adler1, adler2, len2); cannam@89: } cannam@89: cannam@89: uLong ZEXPORT adler32_combine64(adler1, adler2, len2) cannam@89: uLong adler1; cannam@89: uLong adler2; cannam@89: z_off64_t len2; cannam@89: { cannam@89: return adler32_combine_(adler1, adler2, len2); cannam@89: }