cannam@154: /*********************************************************************** cannam@154: Copyright (c) 2006-2011, Skype Limited. All rights reserved. cannam@154: Redistribution and use in source and binary forms, with or without cannam@154: modification, are permitted provided that the following conditions cannam@154: are met: cannam@154: - Redistributions of source code must retain the above copyright notice, cannam@154: this list of conditions and the following disclaimer. cannam@154: - Redistributions in binary form must reproduce the above copyright cannam@154: notice, this list of conditions and the following disclaimer in the cannam@154: documentation and/or other materials provided with the distribution. cannam@154: - Neither the name of Internet Society, IETF or IETF Trust, nor the cannam@154: names of specific contributors, may be used to endorse or promote cannam@154: products derived from this software without specific prior written cannam@154: permission. cannam@154: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" cannam@154: AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE cannam@154: IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE cannam@154: ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE cannam@154: LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR cannam@154: CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF cannam@154: SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS cannam@154: INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN cannam@154: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) cannam@154: ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE cannam@154: POSSIBILITY OF SUCH DAMAGE. cannam@154: ***********************************************************************/ cannam@154: cannam@154: #ifdef HAVE_CONFIG_H cannam@154: #include "config.h" cannam@154: #endif cannam@154: cannam@154: /* conversion between prediction filter coefficients and LSFs */ cannam@154: /* order should be even */ cannam@154: /* a piecewise linear approximation maps LSF <-> cos(LSF) */ cannam@154: /* therefore the result is not accurate LSFs, but the two */ cannam@154: /* functions are accurate inverses of each other */ cannam@154: cannam@154: #include "SigProc_FIX.h" cannam@154: #include "tables.h" cannam@154: cannam@154: #define QA 16 cannam@154: cannam@154: /* helper function for NLSF2A(..) */ cannam@154: static OPUS_INLINE void silk_NLSF2A_find_poly( cannam@154: opus_int32 *out, /* O intermediate polynomial, QA [dd+1] */ cannam@154: const opus_int32 *cLSF, /* I vector of interleaved 2*cos(LSFs), QA [d] */ cannam@154: opus_int dd /* I polynomial order (= 1/2 * filter order) */ cannam@154: ) cannam@154: { cannam@154: opus_int k, n; cannam@154: opus_int32 ftmp; cannam@154: cannam@154: out[0] = silk_LSHIFT( 1, QA ); cannam@154: out[1] = -cLSF[0]; cannam@154: for( k = 1; k < dd; k++ ) { cannam@154: ftmp = cLSF[2*k]; /* QA*/ cannam@154: out[k+1] = silk_LSHIFT( out[k-1], 1 ) - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[k] ), QA ); cannam@154: for( n = k; n > 1; n-- ) { cannam@154: out[n] += out[n-2] - (opus_int32)silk_RSHIFT_ROUND64( silk_SMULL( ftmp, out[n-1] ), QA ); cannam@154: } cannam@154: out[1] -= ftmp; cannam@154: } cannam@154: } cannam@154: cannam@154: /* compute whitening filter coefficients from normalized line spectral frequencies */ cannam@154: void silk_NLSF2A( cannam@154: opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */ cannam@154: const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */ cannam@154: const opus_int d, /* I filter order (should be even) */ cannam@154: int arch /* I Run-time architecture */ cannam@154: ) cannam@154: { cannam@154: /* This ordering was found to maximize quality. It improves numerical accuracy of cannam@154: silk_NLSF2A_find_poly() compared to "standard" ordering. */ cannam@154: static const unsigned char ordering16[16] = { cannam@154: 0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1 cannam@154: }; cannam@154: static const unsigned char ordering10[10] = { cannam@154: 0, 9, 6, 3, 4, 5, 8, 1, 2, 7 cannam@154: }; cannam@154: const unsigned char *ordering; cannam@154: opus_int k, i, dd; cannam@154: opus_int32 cos_LSF_QA[ SILK_MAX_ORDER_LPC ]; cannam@154: opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ], Q[ SILK_MAX_ORDER_LPC / 2 + 1 ]; cannam@154: opus_int32 Ptmp, Qtmp, f_int, f_frac, cos_val, delta; cannam@154: opus_int32 a32_QA1[ SILK_MAX_ORDER_LPC ]; cannam@154: cannam@154: silk_assert( LSF_COS_TAB_SZ_FIX == 128 ); cannam@154: celt_assert( d==10 || d==16 ); cannam@154: cannam@154: /* convert LSFs to 2*cos(LSF), using piecewise linear curve from table */ cannam@154: ordering = d == 16 ? ordering16 : ordering10; cannam@154: for( k = 0; k < d; k++ ) { cannam@154: silk_assert( NLSF[k] >= 0 ); cannam@154: cannam@154: /* f_int on a scale 0-127 (rounded down) */ cannam@154: f_int = silk_RSHIFT( NLSF[k], 15 - 7 ); cannam@154: cannam@154: /* f_frac, range: 0..255 */ cannam@154: f_frac = NLSF[k] - silk_LSHIFT( f_int, 15 - 7 ); cannam@154: cannam@154: silk_assert(f_int >= 0); cannam@154: silk_assert(f_int < LSF_COS_TAB_SZ_FIX ); cannam@154: cannam@154: /* Read start and end value from table */ cannam@154: cos_val = silk_LSFCosTab_FIX_Q12[ f_int ]; /* Q12 */ cannam@154: delta = silk_LSFCosTab_FIX_Q12[ f_int + 1 ] - cos_val; /* Q12, with a range of 0..200 */ cannam@154: cannam@154: /* Linear interpolation */ cannam@154: cos_LSF_QA[ordering[k]] = silk_RSHIFT_ROUND( silk_LSHIFT( cos_val, 8 ) + silk_MUL( delta, f_frac ), 20 - QA ); /* QA */ cannam@154: } cannam@154: cannam@154: dd = silk_RSHIFT( d, 1 ); cannam@154: cannam@154: /* generate even and odd polynomials using convolution */ cannam@154: silk_NLSF2A_find_poly( P, &cos_LSF_QA[ 0 ], dd ); cannam@154: silk_NLSF2A_find_poly( Q, &cos_LSF_QA[ 1 ], dd ); cannam@154: cannam@154: /* convert even and odd polynomials to opus_int32 Q12 filter coefs */ cannam@154: for( k = 0; k < dd; k++ ) { cannam@154: Ptmp = P[ k+1 ] + P[ k ]; cannam@154: Qtmp = Q[ k+1 ] - Q[ k ]; cannam@154: cannam@154: /* the Ptmp and Qtmp values at this stage need to fit in int32 */ cannam@154: a32_QA1[ k ] = -Qtmp - Ptmp; /* QA+1 */ cannam@154: a32_QA1[ d-k-1 ] = Qtmp - Ptmp; /* QA+1 */ cannam@154: } cannam@154: cannam@154: /* Convert int32 coefficients to Q12 int16 coefs */ cannam@154: silk_LPC_fit( a_Q12, a32_QA1, 12, QA + 1, d ); cannam@154: cannam@154: for( i = 0; silk_LPC_inverse_pred_gain( a_Q12, d, arch ) == 0 && i < MAX_LPC_STABILIZE_ITERATIONS; i++ ) { cannam@154: /* Prediction coefficients are (too close to) unstable; apply bandwidth expansion */ cannam@154: /* on the unscaled coefficients, convert to Q12 and measure again */ cannam@154: silk_bwexpander_32( a32_QA1, d, 65536 - silk_LSHIFT( 2, i ) ); cannam@154: for( k = 0; k < d; k++ ) { cannam@154: a_Q12[ k ] = (opus_int16)silk_RSHIFT_ROUND( a32_QA1[ k ], QA + 1 - 12 ); /* QA+1 -> Q12 */ cannam@154: } cannam@154: } cannam@154: } cannam@154: