cannam@85: /* cannam@85: * libmad - MPEG audio decoder library cannam@85: * Copyright (C) 2000-2004 Underbit Technologies, Inc. cannam@85: * cannam@85: * This program is free software; you can redistribute it and/or modify cannam@85: * it under the terms of the GNU General Public License as published by cannam@85: * the Free Software Foundation; either version 2 of the License, or cannam@85: * (at your option) any later version. cannam@85: * cannam@85: * This program is distributed in the hope that it will be useful, cannam@85: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@85: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@85: * GNU General Public License for more details. cannam@85: * cannam@85: * You should have received a copy of the GNU General Public License cannam@85: * along with this program; if not, write to the Free Software cannam@85: * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA cannam@85: * cannam@85: * $Id: fixed.h,v 1.38 2004/02/17 02:02:03 rob Exp $ cannam@85: */ cannam@85: cannam@85: # ifndef LIBMAD_FIXED_H cannam@85: # define LIBMAD_FIXED_H cannam@85: cannam@85: # if SIZEOF_INT >= 4 cannam@85: typedef signed int mad_fixed_t; cannam@85: cannam@85: typedef signed int mad_fixed64hi_t; cannam@85: typedef unsigned int mad_fixed64lo_t; cannam@85: # else cannam@85: typedef signed long mad_fixed_t; cannam@85: cannam@85: typedef signed long mad_fixed64hi_t; cannam@85: typedef unsigned long mad_fixed64lo_t; cannam@85: # endif cannam@85: cannam@85: # if defined(_MSC_VER) cannam@85: # define mad_fixed64_t signed __int64 cannam@85: # elif 1 || defined(__GNUC__) cannam@85: # define mad_fixed64_t signed long long cannam@85: # endif cannam@85: cannam@85: # if defined(FPM_FLOAT) cannam@85: typedef double mad_sample_t; cannam@85: # else cannam@85: typedef mad_fixed_t mad_sample_t; cannam@85: # endif cannam@85: cannam@85: /* cannam@85: * Fixed-point format: 0xABBBBBBB cannam@85: * A == whole part (sign + 3 bits) cannam@85: * B == fractional part (28 bits) cannam@85: * cannam@85: * Values are signed two's complement, so the effective range is: cannam@85: * 0x80000000 to 0x7fffffff cannam@85: * -8.0 to +7.9999999962747097015380859375 cannam@85: * cannam@85: * The smallest representable value is: cannam@85: * 0x00000001 == 0.0000000037252902984619140625 (i.e. about 3.725e-9) cannam@85: * cannam@85: * 28 bits of fractional accuracy represent about cannam@85: * 8.6 digits of decimal accuracy. cannam@85: * cannam@85: * Fixed-point numbers can be added or subtracted as normal cannam@85: * integers, but multiplication requires shifting the 64-bit result cannam@85: * from 56 fractional bits back to 28 (and rounding.) cannam@85: * cannam@85: * Changing the definition of MAD_F_FRACBITS is only partially cannam@85: * supported, and must be done with care. cannam@85: */ cannam@85: cannam@85: # define MAD_F_FRACBITS 28 cannam@85: cannam@85: # if MAD_F_FRACBITS == 28 cannam@85: # define MAD_F(x) ((mad_fixed_t) (x##L)) cannam@85: # else cannam@85: # if MAD_F_FRACBITS < 28 cannam@85: # warning "MAD_F_FRACBITS < 28" cannam@85: # define MAD_F(x) ((mad_fixed_t) \ cannam@85: (((x##L) + \ cannam@85: (1L << (28 - MAD_F_FRACBITS - 1))) >> \ cannam@85: (28 - MAD_F_FRACBITS))) cannam@85: # elif MAD_F_FRACBITS > 28 cannam@85: # error "MAD_F_FRACBITS > 28 not currently supported" cannam@85: # define MAD_F(x) ((mad_fixed_t) \ cannam@85: ((x##L) << (MAD_F_FRACBITS - 28))) cannam@85: # endif cannam@85: # endif cannam@85: cannam@85: # define MAD_F_MIN ((mad_fixed_t) -0x80000000L) cannam@85: # define MAD_F_MAX ((mad_fixed_t) +0x7fffffffL) cannam@85: cannam@85: # define MAD_F_ONE MAD_F(0x10000000) cannam@85: cannam@85: # define mad_f_tofixed(x) ((mad_fixed_t) \ cannam@85: ((x) * (double) (1L << MAD_F_FRACBITS) + 0.5)) cannam@85: # define mad_f_todouble(x) ((double) \ cannam@85: ((x) / (double) (1L << MAD_F_FRACBITS))) cannam@85: cannam@85: # define mad_f_intpart(x) ((x) >> MAD_F_FRACBITS) cannam@85: # define mad_f_fracpart(x) ((x) & ((1L << MAD_F_FRACBITS) - 1)) cannam@85: /* (x should be positive) */ cannam@85: cannam@85: # define mad_f_fromint(x) ((x) << MAD_F_FRACBITS) cannam@85: cannam@85: # define mad_f_add(x, y) ((x) + (y)) cannam@85: # define mad_f_sub(x, y) ((x) - (y)) cannam@85: cannam@85: # if defined(FPM_FLOAT) cannam@85: # error "FPM_FLOAT not yet supported" cannam@85: cannam@85: # undef MAD_F cannam@85: # define MAD_F(x) mad_f_todouble(x) cannam@85: cannam@85: # define mad_f_mul(x, y) ((x) * (y)) cannam@85: # define mad_f_scale64 cannam@85: cannam@85: # undef ASO_ZEROCHECK cannam@85: cannam@85: # elif defined(FPM_64BIT) cannam@85: cannam@85: /* cannam@85: * This version should be the most accurate if 64-bit types are supported by cannam@85: * the compiler, although it may not be the most efficient. cannam@85: */ cannam@85: # if defined(OPT_ACCURACY) cannam@85: # define mad_f_mul(x, y) \ cannam@85: ((mad_fixed_t) \ cannam@85: ((((mad_fixed64_t) (x) * (y)) + \ cannam@85: (1L << (MAD_F_SCALEBITS - 1))) >> MAD_F_SCALEBITS)) cannam@85: # else cannam@85: # define mad_f_mul(x, y) \ cannam@85: ((mad_fixed_t) (((mad_fixed64_t) (x) * (y)) >> MAD_F_SCALEBITS)) cannam@85: # endif cannam@85: cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: cannam@85: /* --- Intel --------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_INTEL) cannam@85: cannam@85: # if defined(_MSC_VER) cannam@85: # pragma warning(push) cannam@85: # pragma warning(disable: 4035) /* no return value */ cannam@85: static __forceinline cannam@85: mad_fixed_t mad_f_mul_inline(mad_fixed_t x, mad_fixed_t y) cannam@85: { cannam@85: enum { cannam@85: fracbits = MAD_F_FRACBITS cannam@85: }; cannam@85: cannam@85: __asm { cannam@85: mov eax, x cannam@85: imul y cannam@85: shrd eax, edx, fracbits cannam@85: } cannam@85: cannam@85: /* implicit return of eax */ cannam@85: } cannam@85: # pragma warning(pop) cannam@85: cannam@85: # define mad_f_mul mad_f_mul_inline cannam@85: # define mad_f_scale64 cannam@85: # else cannam@85: /* cannam@85: * This Intel version is fast and accurate; the disposition of the least cannam@85: * significant bit depends on OPT_ACCURACY via mad_f_scale64(). cannam@85: */ cannam@85: # define MAD_F_MLX(hi, lo, x, y) \ cannam@85: asm ("imull %3" \ cannam@85: : "=a" (lo), "=d" (hi) \ cannam@85: : "%a" (x), "rm" (y) \ cannam@85: : "cc") cannam@85: cannam@85: # if defined(OPT_ACCURACY) cannam@85: /* cannam@85: * This gives best accuracy but is not very fast. cannam@85: */ cannam@85: # define MAD_F_MLA(hi, lo, x, y) \ cannam@85: ({ mad_fixed64hi_t __hi; \ cannam@85: mad_fixed64lo_t __lo; \ cannam@85: MAD_F_MLX(__hi, __lo, (x), (y)); \ cannam@85: asm ("addl %2,%0\n\t" \ cannam@85: "adcl %3,%1" \ cannam@85: : "=rm" (lo), "=rm" (hi) \ cannam@85: : "r" (__lo), "r" (__hi), "0" (lo), "1" (hi) \ cannam@85: : "cc"); \ cannam@85: }) cannam@85: # endif /* OPT_ACCURACY */ cannam@85: cannam@85: # if defined(OPT_ACCURACY) cannam@85: /* cannam@85: * Surprisingly, this is faster than SHRD followed by ADC. cannam@85: */ cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed64hi_t __hi_; \ cannam@85: mad_fixed64lo_t __lo_; \ cannam@85: mad_fixed_t __result; \ cannam@85: asm ("addl %4,%2\n\t" \ cannam@85: "adcl %5,%3" \ cannam@85: : "=rm" (__lo_), "=rm" (__hi_) \ cannam@85: : "0" (lo), "1" (hi), \ cannam@85: "ir" (1L << (MAD_F_SCALEBITS - 1)), "ir" (0) \ cannam@85: : "cc"); \ cannam@85: asm ("shrdl %3,%2,%1" \ cannam@85: : "=rm" (__result) \ cannam@85: : "0" (__lo_), "r" (__hi_), "I" (MAD_F_SCALEBITS) \ cannam@85: : "cc"); \ cannam@85: __result; \ cannam@85: }) cannam@85: # elif defined(OPT_INTEL) cannam@85: /* cannam@85: * Alternate Intel scaling that may or may not perform better. cannam@85: */ cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed_t __result; \ cannam@85: asm ("shrl %3,%1\n\t" \ cannam@85: "shll %4,%2\n\t" \ cannam@85: "orl %2,%1" \ cannam@85: : "=rm" (__result) \ cannam@85: : "0" (lo), "r" (hi), \ cannam@85: "I" (MAD_F_SCALEBITS), "I" (32 - MAD_F_SCALEBITS) \ cannam@85: : "cc"); \ cannam@85: __result; \ cannam@85: }) cannam@85: # else cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed_t __result; \ cannam@85: asm ("shrdl %3,%2,%1" \ cannam@85: : "=rm" (__result) \ cannam@85: : "0" (lo), "r" (hi), "I" (MAD_F_SCALEBITS) \ cannam@85: : "cc"); \ cannam@85: __result; \ cannam@85: }) cannam@85: # endif /* OPT_ACCURACY */ cannam@85: cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: # endif cannam@85: cannam@85: /* --- ARM ----------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_ARM) cannam@85: cannam@85: /* cannam@85: * This ARM V4 version is as accurate as FPM_64BIT but much faster. The cannam@85: * least significant bit is properly rounded at no CPU cycle cost! cannam@85: */ cannam@85: # if 1 cannam@85: /* cannam@85: * This is faster than the default implementation via MAD_F_MLX() and cannam@85: * mad_f_scale64(). cannam@85: */ cannam@85: # define mad_f_mul(x, y) \ cannam@85: ({ mad_fixed64hi_t __hi; \ cannam@85: mad_fixed64lo_t __lo; \ cannam@85: mad_fixed_t __result; \ cannam@85: asm ("smull %0, %1, %3, %4\n\t" \ cannam@85: "movs %0, %0, lsr %5\n\t" \ cannam@85: "adc %2, %0, %1, lsl %6" \ cannam@85: : "=&r" (__lo), "=&r" (__hi), "=r" (__result) \ cannam@85: : "%r" (x), "r" (y), \ cannam@85: "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \ cannam@85: : "cc"); \ cannam@85: __result; \ cannam@85: }) cannam@85: # endif cannam@85: cannam@85: # define MAD_F_MLX(hi, lo, x, y) \ cannam@85: asm ("smull %0, %1, %2, %3" \ cannam@85: : "=&r" (lo), "=&r" (hi) \ cannam@85: : "%r" (x), "r" (y)) cannam@85: cannam@85: # define MAD_F_MLA(hi, lo, x, y) \ cannam@85: asm ("smlal %0, %1, %2, %3" \ cannam@85: : "+r" (lo), "+r" (hi) \ cannam@85: : "%r" (x), "r" (y)) cannam@85: cannam@85: # define MAD_F_MLN(hi, lo) \ cannam@85: asm ("rsbs %0, %2, #0\n\t" \ cannam@85: "rsc %1, %3, #0" \ cannam@85: : "=r" (lo), "=r" (hi) \ cannam@85: : "0" (lo), "1" (hi) \ cannam@85: : "cc") cannam@85: cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed_t __result; \ cannam@85: asm ("movs %0, %1, lsr %3\n\t" \ cannam@85: "adc %0, %0, %2, lsl %4" \ cannam@85: : "=&r" (__result) \ cannam@85: : "r" (lo), "r" (hi), \ cannam@85: "M" (MAD_F_SCALEBITS), "M" (32 - MAD_F_SCALEBITS) \ cannam@85: : "cc"); \ cannam@85: __result; \ cannam@85: }) cannam@85: cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: cannam@85: /* --- MIPS ---------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_MIPS) cannam@85: cannam@85: /* cannam@85: * This MIPS version is fast and accurate; the disposition of the least cannam@85: * significant bit depends on OPT_ACCURACY via mad_f_scale64(). cannam@85: */ cannam@85: # define MAD_F_MLX(hi, lo, x, y) \ cannam@85: asm ("mult %2,%3" \ cannam@85: : "=l" (lo), "=h" (hi) \ cannam@85: : "%r" (x), "r" (y)) cannam@85: cannam@85: # if defined(HAVE_MADD_ASM) cannam@85: # define MAD_F_MLA(hi, lo, x, y) \ cannam@85: asm ("madd %2,%3" \ cannam@85: : "+l" (lo), "+h" (hi) \ cannam@85: : "%r" (x), "r" (y)) cannam@85: # elif defined(HAVE_MADD16_ASM) cannam@85: /* cannam@85: * This loses significant accuracy due to the 16-bit integer limit in the cannam@85: * multiply/accumulate instruction. cannam@85: */ cannam@85: # define MAD_F_ML0(hi, lo, x, y) \ cannam@85: asm ("mult %2,%3" \ cannam@85: : "=l" (lo), "=h" (hi) \ cannam@85: : "%r" ((x) >> 12), "r" ((y) >> 16)) cannam@85: # define MAD_F_MLA(hi, lo, x, y) \ cannam@85: asm ("madd16 %2,%3" \ cannam@85: : "+l" (lo), "+h" (hi) \ cannam@85: : "%r" ((x) >> 12), "r" ((y) >> 16)) cannam@85: # define MAD_F_MLZ(hi, lo) ((mad_fixed_t) (lo)) cannam@85: # endif cannam@85: cannam@85: # if defined(OPT_SPEED) cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ((mad_fixed_t) ((hi) << (32 - MAD_F_SCALEBITS))) cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: # endif cannam@85: cannam@85: /* --- SPARC --------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_SPARC) cannam@85: cannam@85: /* cannam@85: * This SPARC V8 version is fast and accurate; the disposition of the least cannam@85: * significant bit depends on OPT_ACCURACY via mad_f_scale64(). cannam@85: */ cannam@85: # define MAD_F_MLX(hi, lo, x, y) \ cannam@85: asm ("smul %2, %3, %0\n\t" \ cannam@85: "rd %%y, %1" \ cannam@85: : "=r" (lo), "=r" (hi) \ cannam@85: : "%r" (x), "rI" (y)) cannam@85: cannam@85: /* --- PowerPC ------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_PPC) cannam@85: cannam@85: /* cannam@85: * This PowerPC version is fast and accurate; the disposition of the least cannam@85: * significant bit depends on OPT_ACCURACY via mad_f_scale64(). cannam@85: */ cannam@85: # define MAD_F_MLX(hi, lo, x, y) \ cannam@85: do { \ cannam@85: asm ("mullw %0,%1,%2" \ cannam@85: : "=r" (lo) \ cannam@85: : "%r" (x), "r" (y)); \ cannam@85: asm ("mulhw %0,%1,%2" \ cannam@85: : "=r" (hi) \ cannam@85: : "%r" (x), "r" (y)); \ cannam@85: } \ cannam@85: while (0) cannam@85: cannam@85: # if defined(OPT_ACCURACY) cannam@85: /* cannam@85: * This gives best accuracy but is not very fast. cannam@85: */ cannam@85: # define MAD_F_MLA(hi, lo, x, y) \ cannam@85: ({ mad_fixed64hi_t __hi; \ cannam@85: mad_fixed64lo_t __lo; \ cannam@85: MAD_F_MLX(__hi, __lo, (x), (y)); \ cannam@85: asm ("addc %0,%2,%3\n\t" \ cannam@85: "adde %1,%4,%5" \ cannam@85: : "=r" (lo), "=r" (hi) \ cannam@85: : "%r" (lo), "r" (__lo), \ cannam@85: "%r" (hi), "r" (__hi) \ cannam@85: : "xer"); \ cannam@85: }) cannam@85: # endif cannam@85: cannam@85: # if defined(OPT_ACCURACY) cannam@85: /* cannam@85: * This is slower than the truncating version below it. cannam@85: */ cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed_t __result, __round; \ cannam@85: asm ("rotrwi %0,%1,%2" \ cannam@85: : "=r" (__result) \ cannam@85: : "r" (lo), "i" (MAD_F_SCALEBITS)); \ cannam@85: asm ("extrwi %0,%1,1,0" \ cannam@85: : "=r" (__round) \ cannam@85: : "r" (__result)); \ cannam@85: asm ("insrwi %0,%1,%2,0" \ cannam@85: : "+r" (__result) \ cannam@85: : "r" (hi), "i" (MAD_F_SCALEBITS)); \ cannam@85: asm ("add %0,%1,%2" \ cannam@85: : "=r" (__result) \ cannam@85: : "%r" (__result), "r" (__round)); \ cannam@85: __result; \ cannam@85: }) cannam@85: # else cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ({ mad_fixed_t __result; \ cannam@85: asm ("rotrwi %0,%1,%2" \ cannam@85: : "=r" (__result) \ cannam@85: : "r" (lo), "i" (MAD_F_SCALEBITS)); \ cannam@85: asm ("insrwi %0,%1,%2,0" \ cannam@85: : "+r" (__result) \ cannam@85: : "r" (hi), "i" (MAD_F_SCALEBITS)); \ cannam@85: __result; \ cannam@85: }) cannam@85: # endif cannam@85: cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: cannam@85: /* --- Default ------------------------------------------------------------- */ cannam@85: cannam@85: # elif defined(FPM_DEFAULT) cannam@85: cannam@85: /* cannam@85: * This version is the most portable but it loses significant accuracy. cannam@85: * Furthermore, accuracy is biased against the second argument, so care cannam@85: * should be taken when ordering operands. cannam@85: * cannam@85: * The scale factors are constant as this is not used with SSO. cannam@85: * cannam@85: * Pre-rounding is required to stay within the limits of compliance. cannam@85: */ cannam@85: # if defined(OPT_SPEED) cannam@85: # define mad_f_mul(x, y) (((x) >> 12) * ((y) >> 16)) cannam@85: # else cannam@85: # define mad_f_mul(x, y) ((((x) + (1L << 11)) >> 12) * \ cannam@85: (((y) + (1L << 15)) >> 16)) cannam@85: # endif cannam@85: cannam@85: /* ------------------------------------------------------------------------- */ cannam@85: cannam@85: # else cannam@85: # error "no FPM selected" cannam@85: # endif cannam@85: cannam@85: /* default implementations */ cannam@85: cannam@85: # if !defined(mad_f_mul) cannam@85: # define mad_f_mul(x, y) \ cannam@85: ({ register mad_fixed64hi_t __hi; \ cannam@85: register mad_fixed64lo_t __lo; \ cannam@85: MAD_F_MLX(__hi, __lo, (x), (y)); \ cannam@85: mad_f_scale64(__hi, __lo); \ cannam@85: }) cannam@85: # endif cannam@85: cannam@85: # if !defined(MAD_F_MLA) cannam@85: # define MAD_F_ML0(hi, lo, x, y) ((lo) = mad_f_mul((x), (y))) cannam@85: # define MAD_F_MLA(hi, lo, x, y) ((lo) += mad_f_mul((x), (y))) cannam@85: # define MAD_F_MLN(hi, lo) ((lo) = -(lo)) cannam@85: # define MAD_F_MLZ(hi, lo) ((void) (hi), (mad_fixed_t) (lo)) cannam@85: # endif cannam@85: cannam@85: # if !defined(MAD_F_ML0) cannam@85: # define MAD_F_ML0(hi, lo, x, y) MAD_F_MLX((hi), (lo), (x), (y)) cannam@85: # endif cannam@85: cannam@85: # if !defined(MAD_F_MLN) cannam@85: # define MAD_F_MLN(hi, lo) ((hi) = ((lo) = -(lo)) ? ~(hi) : -(hi)) cannam@85: # endif cannam@85: cannam@85: # if !defined(MAD_F_MLZ) cannam@85: # define MAD_F_MLZ(hi, lo) mad_f_scale64((hi), (lo)) cannam@85: # endif cannam@85: cannam@85: # if !defined(mad_f_scale64) cannam@85: # if defined(OPT_ACCURACY) cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ((((mad_fixed_t) \ cannam@85: (((hi) << (32 - (MAD_F_SCALEBITS - 1))) | \ cannam@85: ((lo) >> (MAD_F_SCALEBITS - 1)))) + 1) >> 1) cannam@85: # else cannam@85: # define mad_f_scale64(hi, lo) \ cannam@85: ((mad_fixed_t) \ cannam@85: (((hi) << (32 - MAD_F_SCALEBITS)) | \ cannam@85: ((lo) >> MAD_F_SCALEBITS))) cannam@85: # endif cannam@85: # define MAD_F_SCALEBITS MAD_F_FRACBITS cannam@85: # endif cannam@85: cannam@85: /* C routines */ cannam@85: cannam@85: mad_fixed_t mad_f_abs(mad_fixed_t); cannam@85: mad_fixed_t mad_f_div(mad_fixed_t, mad_fixed_t); cannam@85: cannam@85: # endif