cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: #include "rdft/rdft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_rdft2 super; cannam@167: cannam@167: plan *cld, *cldrest; cannam@167: INT n, vl, nbuf, bufdist; cannam@167: INT cs, ivs, ovs; cannam@167: } P; cannam@167: cannam@167: /***************************************************************************/ cannam@167: cannam@167: /* FIXME: have alternate copy functions that push a vector loop inside cannam@167: the n loops? */ cannam@167: cannam@167: /* copy halfcomplex array r (contiguous) to complex (strided) array rio/iio. */ cannam@167: static void hc2c(INT n, R *r, R *rio, R *iio, INT os) cannam@167: { cannam@167: INT i; cannam@167: cannam@167: rio[0] = r[0]; cannam@167: iio[0] = 0; cannam@167: cannam@167: for (i = 1; i + i < n; ++i) { cannam@167: rio[i * os] = r[i]; cannam@167: iio[i * os] = r[n - i]; cannam@167: } cannam@167: cannam@167: if (i + i == n) { /* store the Nyquist frequency */ cannam@167: rio[i * os] = r[i]; cannam@167: iio[i * os] = K(0.0); cannam@167: } cannam@167: } cannam@167: cannam@167: /* reverse of hc2c */ cannam@167: static void c2hc(INT n, R *rio, R *iio, INT is, R *r) cannam@167: { cannam@167: INT i; cannam@167: cannam@167: r[0] = rio[0]; cannam@167: cannam@167: for (i = 1; i + i < n; ++i) { cannam@167: r[i] = rio[i * is]; cannam@167: r[n - i] = iio[i * is]; cannam@167: } cannam@167: cannam@167: if (i + i == n) /* store the Nyquist frequency */ cannam@167: r[i] = rio[i * is]; cannam@167: } cannam@167: cannam@167: /***************************************************************************/ cannam@167: cannam@167: static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; cannam@167: INT n = ego->n; cannam@167: INT ivs = ego->ivs, ovs = ego->ovs, os = ego->cs; cannam@167: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@167: plan_rdft2 *cldrest; cannam@167: cannam@167: for (i = nbuf; i <= vl; i += nbuf) { cannam@167: /* transform to bufs: */ cannam@167: cld->apply((plan *) cld, r0, bufs); cannam@167: r0 += ivs * nbuf; r1 += ivs * nbuf; cannam@167: cannam@167: /* copy back */ cannam@167: for (j = 0; j < nbuf; ++j, cr += ovs, ci += ovs) cannam@167: hc2c(n, bufs + j*bufdist, cr, ci, os); cannam@167: } cannam@167: cannam@167: X(ifree)(bufs); cannam@167: cannam@167: /* Do the remaining transforms, if any: */ cannam@167: cldrest = (plan_rdft2 *) ego->cldrest; cannam@167: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); cannam@167: } cannam@167: cannam@167: static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: INT i, j, vl = ego->vl, nbuf = ego->nbuf, bufdist = ego->bufdist; cannam@167: INT n = ego->n; cannam@167: INT ivs = ego->ivs, ovs = ego->ovs, is = ego->cs; cannam@167: R *bufs = (R *)MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@167: plan_rdft2 *cldrest; cannam@167: cannam@167: for (i = nbuf; i <= vl; i += nbuf) { cannam@167: /* copy to bufs */ cannam@167: for (j = 0; j < nbuf; ++j, cr += ivs, ci += ivs) cannam@167: c2hc(n, cr, ci, is, bufs + j*bufdist); cannam@167: cannam@167: /* transform back: */ cannam@167: cld->apply((plan *) cld, bufs, r0); cannam@167: r0 += ovs * nbuf; r1 += ovs * nbuf; cannam@167: } cannam@167: cannam@167: X(ifree)(bufs); cannam@167: cannam@167: /* Do the remaining transforms, if any: */ cannam@167: cldrest = (plan_rdft2 *) ego->cldrest; cannam@167: cldrest->apply((plan *) cldrest, r0, r1, cr, ci); cannam@167: } cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: cannam@167: X(plan_awake)(ego->cld, wakefulness); cannam@167: X(plan_awake)(ego->cldrest, wakefulness); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cldrest); cannam@167: X(plan_destroy_internal)(ego->cld); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: p->print(p, "(rdft2-rdft-%s-%D%v/%D-%D%(%p%)%(%p%))", cannam@167: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", cannam@167: ego->n, ego->nbuf, cannam@167: ego->vl, ego->bufdist % ego->n, cannam@167: ego->cld, ego->cldrest); cannam@167: } cannam@167: cannam@167: static INT min_nbuf(const problem_rdft2 *p, INT n, INT vl) cannam@167: { cannam@167: INT is, os, ivs, ovs; cannam@167: cannam@167: if (p->r0 != p->cr) cannam@167: return 1; cannam@167: if (X(rdft2_inplace_strides(p, RNK_MINFTY))) cannam@167: return 1; cannam@167: A(p->vecsz->rnk == 1); /* rank 0 and MINFTY are inplace */ cannam@167: cannam@167: X(rdft2_strides)(p->kind, p->sz->dims, &is, &os); cannam@167: X(rdft2_strides)(p->kind, p->vecsz->dims, &ivs, &ovs); cannam@167: cannam@167: /* handle one potentially common case: "contiguous" real and cannam@167: complex arrays, which overlap because of the differing sizes. */ cannam@167: if (n * X(iabs)(is) <= X(iabs)(ivs) cannam@167: && (n/2 + 1) * X(iabs)(os) <= X(iabs)(ovs) cannam@167: && ( ((p->cr - p->ci) <= X(iabs)(os)) || cannam@167: ((p->ci - p->cr) <= X(iabs)(os)) ) cannam@167: && ivs > 0 && ovs > 0) { cannam@167: INT vsmin = X(imin)(ivs, ovs); cannam@167: INT vsmax = X(imax)(ivs, ovs); cannam@167: return(((vsmax - vsmin) * vl + vsmin - 1) / vsmin); cannam@167: } cannam@167: cannam@167: return vl; /* punt: just buffer the whole vector */ cannam@167: } cannam@167: cannam@167: static int applicable0(const problem *p_, const S *ego, const planner *plnr) cannam@167: { cannam@167: const problem_rdft2 *p = (const problem_rdft2 *) p_; cannam@167: UNUSED(ego); cannam@167: return(1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: && p->sz->rnk == 1 cannam@167: cannam@167: /* FIXME: does it make sense to do R2HCII ? */ cannam@167: && (p->kind == R2HC || p->kind == HC2R) cannam@167: cannam@167: /* real strides must allow for reduction to rdft */ cannam@167: && (2 * (p->r1 - p->r0) == cannam@167: (((p->kind == R2HC) ? p->sz->dims[0].is : p->sz->dims[0].os))) cannam@167: cannam@167: && !(X(toobig)(p->sz->dims[0].n) && CONSERVE_MEMORYP(plnr)) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int applicable(const problem *p_, const S *ego, const planner *plnr) cannam@167: { cannam@167: const problem_rdft2 *p; cannam@167: cannam@167: if (NO_BUFFERINGP(plnr)) return 0; cannam@167: cannam@167: if (!applicable0(p_, ego, plnr)) return 0; cannam@167: cannam@167: p = (const problem_rdft2 *) p_; cannam@167: if (NO_UGLYP(plnr)) { cannam@167: if (p->r0 != p->cr) return 0; cannam@167: if (X(toobig)(p->sz->dims[0].n)) return 0; cannam@167: } cannam@167: return 1; cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: P *pln; cannam@167: plan *cld = (plan *) 0; cannam@167: plan *cldrest = (plan *) 0; cannam@167: const problem_rdft2 *p = (const problem_rdft2 *) p_; cannam@167: R *bufs = (R *) 0; cannam@167: INT nbuf = 0, bufdist, n, vl; cannam@167: INT ivs, ovs, rs, id, od; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(rdft2_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: if (!applicable(p_, ego, plnr)) cannam@167: goto nada; cannam@167: cannam@167: n = p->sz->dims[0].n; cannam@167: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); cannam@167: cannam@167: nbuf = X(imax)(X(nbuf)(n, vl, 0), min_nbuf(p, n, vl)); cannam@167: bufdist = X(bufdist)(n, vl); cannam@167: A(nbuf > 0); cannam@167: cannam@167: /* initial allocation for the purpose of planning */ cannam@167: bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS); cannam@167: cannam@167: id = ivs * (nbuf * (vl / nbuf)); cannam@167: od = ovs * (nbuf * (vl / nbuf)); cannam@167: cannam@167: if (p->kind == R2HC) { cannam@167: cld = X(mkplan_f_d)( cannam@167: plnr, cannam@167: X(mkproblem_rdft_d)( cannam@167: X(mktensor_1d)(n, p->sz->dims[0].is/2, 1), cannam@167: X(mktensor_1d)(nbuf, ivs, bufdist), cannam@167: TAINT(p->r0, ivs * nbuf), bufs, &p->kind), cannam@167: 0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0); cannam@167: if (!cld) goto nada; cannam@167: X(ifree)(bufs); bufs = 0; cannam@167: cannam@167: cldrest = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft2_d)( cannam@167: X(tensor_copy)(p->sz), cannam@167: X(mktensor_1d)(vl % nbuf, ivs, ovs), cannam@167: p->r0 + id, p->r1 + id, cannam@167: p->cr + od, p->ci + od, cannam@167: p->kind)); cannam@167: if (!cldrest) goto nada; cannam@167: cannam@167: pln = MKPLAN_RDFT2(P, &padt, apply_r2hc); cannam@167: } else { cannam@167: A(p->kind == HC2R); cannam@167: cld = X(mkplan_f_d)( cannam@167: plnr, cannam@167: X(mkproblem_rdft_d)( cannam@167: X(mktensor_1d)(n, 1, p->sz->dims[0].os/2), cannam@167: X(mktensor_1d)(nbuf, bufdist, ovs), cannam@167: bufs, TAINT(p->r0, ovs * nbuf), &p->kind), cannam@167: 0, 0, NO_DESTROY_INPUT); /* always ok to destroy bufs */ cannam@167: if (!cld) goto nada; cannam@167: X(ifree)(bufs); bufs = 0; cannam@167: cannam@167: cldrest = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft2_d)( cannam@167: X(tensor_copy)(p->sz), cannam@167: X(mktensor_1d)(vl % nbuf, ivs, ovs), cannam@167: p->r0 + od, p->r1 + od, cannam@167: p->cr + id, p->ci + id, cannam@167: p->kind)); cannam@167: if (!cldrest) goto nada; cannam@167: pln = MKPLAN_RDFT2(P, &padt, apply_hc2r); cannam@167: } cannam@167: cannam@167: pln->cld = cld; cannam@167: pln->cldrest = cldrest; cannam@167: pln->n = n; cannam@167: pln->vl = vl; cannam@167: pln->ivs = ivs; cannam@167: pln->ovs = ovs; cannam@167: X(rdft2_strides)(p->kind, &p->sz->dims[0], &rs, &pln->cs); cannam@167: pln->nbuf = nbuf; cannam@167: pln->bufdist = bufdist; cannam@167: cannam@167: X(ops_madd)(vl / nbuf, &cld->ops, &cldrest->ops, cannam@167: &pln->super.super.ops); cannam@167: pln->super.super.ops.other += (p->kind == R2HC ? (n + 2) : n) * vl; cannam@167: cannam@167: return &(pln->super.super); cannam@167: cannam@167: nada: cannam@167: X(ifree0)(bufs); cannam@167: X(plan_destroy_internal)(cldrest); cannam@167: X(plan_destroy_internal)(cld); cannam@167: return (plan *) 0; cannam@167: } cannam@167: cannam@167: static solver *mksolver(void) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: void X(rdft2_rdft_register)(planner *p) cannam@167: { cannam@167: REGISTER_SOLVER(p, mksolver()); cannam@167: }