cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: cannam@167: /* solvers/plans for vectors of small RDFT's that cannot be done cannam@167: in-place directly. Use a rank-0 plan to rearrange the data cannam@167: before or after the transform. Can also change an out-of-place cannam@167: plan into a copy + in-place (where the in-place transform cannam@167: is e.g. unit stride). */ cannam@167: cannam@167: /* FIXME: merge with rank-geq2.c(?), since this is just a special case cannam@167: of a rank split where the first/second transform has rank 0. */ cannam@167: cannam@167: #include "rdft/rdft.h" cannam@167: cannam@167: typedef problem *(*mkcld_t) (const problem_rdft *p); cannam@167: cannam@167: typedef struct { cannam@167: rdftapply apply; cannam@167: problem *(*mkcld)(const problem_rdft *p); cannam@167: const char *nam; cannam@167: } ndrct_adt; cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: const ndrct_adt *adt; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_rdft super; cannam@167: plan *cldcpy, *cld; cannam@167: const S *slv; cannam@167: } P; cannam@167: cannam@167: /*-----------------------------------------------------------------------*/ cannam@167: /* first rearrange, then transform */ cannam@167: static void apply_before(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: cannam@167: { cannam@167: plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; cannam@167: cldcpy->apply(ego->cldcpy, I, O); cannam@167: } cannam@167: { cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply(ego->cld, O, O); cannam@167: } cannam@167: } cannam@167: cannam@167: static problem *mkcld_before(const problem_rdft *p) cannam@167: { cannam@167: return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS), cannam@167: X(tensor_copy_inplace)(p->vecsz, INPLACE_OS), cannam@167: p->O, p->O, p->kind); cannam@167: } cannam@167: cannam@167: static const ndrct_adt adt_before = cannam@167: { cannam@167: apply_before, mkcld_before, "rdft-indirect-before" cannam@167: }; cannam@167: cannam@167: /*-----------------------------------------------------------------------*/ cannam@167: /* first transform, then rearrange */ cannam@167: cannam@167: static void apply_after(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: cannam@167: { cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply(ego->cld, I, I); cannam@167: } cannam@167: { cannam@167: plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; cannam@167: cldcpy->apply(ego->cldcpy, I, O); cannam@167: } cannam@167: } cannam@167: cannam@167: static problem *mkcld_after(const problem_rdft *p) cannam@167: { cannam@167: return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS), cannam@167: X(tensor_copy_inplace)(p->vecsz, INPLACE_IS), cannam@167: p->I, p->I, p->kind); cannam@167: } cannam@167: cannam@167: static const ndrct_adt adt_after = cannam@167: { cannam@167: apply_after, mkcld_after, "rdft-indirect-after" cannam@167: }; cannam@167: cannam@167: /*-----------------------------------------------------------------------*/ cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cld); cannam@167: X(plan_destroy_internal)(ego->cldcpy); cannam@167: } cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_awake)(ego->cldcpy, wakefulness); cannam@167: X(plan_awake)(ego->cld, wakefulness); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: const S *s = ego->slv; cannam@167: p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy); cannam@167: } cannam@167: cannam@167: static int applicable0(const solver *ego_, const problem *p_, cannam@167: const planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: return (1 cannam@167: && FINITE_RNK(p->vecsz->rnk) cannam@167: cannam@167: /* problem must be a nontrivial transform, not just a copy */ cannam@167: && p->sz->rnk > 0 cannam@167: cannam@167: && (0 cannam@167: cannam@167: /* problem must be in-place & require some cannam@167: rearrangement of the data */ cannam@167: || (p->I == p->O cannam@167: && !(X(tensor_inplace_strides2)(p->sz, p->vecsz))) cannam@167: cannam@167: /* or problem must be out of place, transforming cannam@167: from stride 1/2 to bigger stride, for apply_after */ cannam@167: || (p->I != p->O && ego->adt->apply == apply_after cannam@167: && !NO_DESTROY_INPUTP(plnr) cannam@167: && X(tensor_min_istride)(p->sz) <= 2 cannam@167: && X(tensor_min_ostride)(p->sz) > 2) cannam@167: cannam@167: /* or problem must be out of place, transforming cannam@167: to stride 1/2 from bigger stride, for apply_before */ cannam@167: || (p->I != p->O && ego->adt->apply == apply_before cannam@167: && X(tensor_min_ostride)(p->sz) <= 2 cannam@167: && X(tensor_min_istride)(p->sz) > 2) cannam@167: cannam@167: ) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int applicable(const solver *ego_, const problem *p_, cannam@167: const planner *plnr) cannam@167: { cannam@167: if (!applicable0(ego_, p_, plnr)) return 0; cannam@167: cannam@167: if (NO_INDIRECT_OP_P(plnr)) { cannam@167: const problem_rdft *p = (const problem_rdft *)p_; cannam@167: if (p->I != p->O) return 0; cannam@167: } cannam@167: cannam@167: return 1; cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: const S *ego = (const S *) ego_; cannam@167: P *pln; cannam@167: plan *cld = 0, *cldcpy = 0; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(rdft_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: if (!applicable(ego_, p_, plnr)) cannam@167: return (plan *) 0; cannam@167: cannam@167: cldcpy = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft_0_d)( cannam@167: X(tensor_append)(p->vecsz, p->sz), cannam@167: p->I, p->O)); cannam@167: if (!cldcpy) goto nada; cannam@167: cannam@167: cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0); cannam@167: if (!cld) goto nada; cannam@167: cannam@167: pln = MKPLAN_RDFT(P, &padt, ego->adt->apply); cannam@167: pln->cld = cld; cannam@167: pln->cldcpy = cldcpy; cannam@167: pln->slv = ego; cannam@167: X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops); cannam@167: cannam@167: return &(pln->super.super); cannam@167: cannam@167: nada: cannam@167: X(plan_destroy_internal)(cld); cannam@167: X(plan_destroy_internal)(cldcpy); cannam@167: return (plan *)0; cannam@167: } cannam@167: cannam@167: static solver *mksolver(const ndrct_adt *adt) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: slv->adt = adt; cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: void X(rdft_indirect_register)(planner *p) cannam@167: { cannam@167: unsigned i; cannam@167: static const ndrct_adt *const adts[] = { cannam@167: &adt_before, &adt_after cannam@167: }; cannam@167: cannam@167: for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) cannam@167: REGISTER_SOLVER(p, mksolver(adts[i])); cannam@167: }