cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: /* Compute the complex DFT by combining R2HC RDFTs on the real cannam@167: and imaginary parts. This could be useful for people just wanting cannam@167: to link to the real codelets and not the complex ones. It could cannam@167: also even be faster than the complex algorithms for split (as opposed cannam@167: to interleaved) real/imag complex data. */ cannam@167: cannam@167: #include "rdft/rdft.h" cannam@167: #include "dft/dft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_dft super; cannam@167: plan *cld; cannam@167: INT ishift, oshift; cannam@167: INT os; cannam@167: INT n; cannam@167: } P; cannam@167: cannam@167: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: INT n; cannam@167: cannam@167: UNUSED(ii); cannam@167: cannam@167: { /* transform vector of real & imag parts: */ cannam@167: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@167: cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); cannam@167: } cannam@167: cannam@167: n = ego->n; cannam@167: if (n > 1) { cannam@167: INT i, os = ego->os; cannam@167: for (i = 1; i < (n + 1)/2; ++i) { cannam@167: E rop, iop, iom, rom; cannam@167: rop = ro[os * i]; cannam@167: iop = io[os * i]; cannam@167: rom = ro[os * (n - i)]; cannam@167: iom = io[os * (n - i)]; cannam@167: ro[os * i] = rop - iom; cannam@167: io[os * i] = iop + rom; cannam@167: ro[os * (n - i)] = rop + iom; cannam@167: io[os * (n - i)] = iop - rom; cannam@167: } cannam@167: } cannam@167: } cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_awake)(ego->cld, wakefulness); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cld); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); cannam@167: } cannam@167: cannam@167: cannam@167: static int applicable0(const problem *p_) cannam@167: { cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) cannam@167: || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int splitp(R *r, R *i, INT n, INT s) cannam@167: { cannam@167: return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); cannam@167: } cannam@167: cannam@167: static int applicable(const problem *p_, const planner *plnr) cannam@167: { cannam@167: if (!applicable0(p_)) return 0; cannam@167: cannam@167: { cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: cannam@167: /* rank-0 problems are always OK */ cannam@167: if (p->sz->rnk == 0) return 1; cannam@167: cannam@167: /* this solver is ok for split arrays */ cannam@167: if (p->sz->rnk == 1 && cannam@167: splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && cannam@167: splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) cannam@167: return 1; cannam@167: cannam@167: return !(NO_DFT_R2HCP(plnr)); cannam@167: } cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: P *pln; cannam@167: const problem_dft *p; cannam@167: plan *cld; cannam@167: INT ishift = 0, oshift = 0; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(dft_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: UNUSED(ego_); cannam@167: if (!applicable(p_, plnr)) cannam@167: return (plan *)0; cannam@167: cannam@167: p = (const problem_dft *) p_; cannam@167: cannam@167: { cannam@167: tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); cannam@167: tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); cannam@167: int i; cannam@167: for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ cannam@167: if (cld_vec->dims[i].is < 0) { cannam@167: INT nm1 = cld_vec->dims[i].n - 1; cannam@167: ishift -= nm1 * (cld_vec->dims[i].is *= -1); cannam@167: oshift -= nm1 * (cld_vec->dims[i].os *= -1); cannam@167: } cannam@167: } cannam@167: cld = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft_1)(p->sz, cld_vec, cannam@167: p->ri + ishift, cannam@167: p->ro + oshift, R2HC)); cannam@167: X(tensor_destroy2)(ri_vec, cld_vec); cannam@167: } cannam@167: if (!cld) return (plan *)0; cannam@167: cannam@167: pln = MKPLAN_DFT(P, &padt, apply); cannam@167: cannam@167: if (p->sz->rnk == 0) { cannam@167: pln->n = 1; cannam@167: pln->os = 0; cannam@167: } cannam@167: else { cannam@167: pln->n = p->sz->dims[0].n; cannam@167: pln->os = p->sz->dims[0].os; cannam@167: } cannam@167: pln->ishift = ishift; cannam@167: pln->oshift = oshift; cannam@167: cannam@167: pln->cld = cld; cannam@167: cannam@167: pln->super.super.ops = cld->ops; cannam@167: pln->super.super.ops.other += 8 * ((pln->n - 1)/2); cannam@167: pln->super.super.ops.add += 4 * ((pln->n - 1)/2); cannam@167: pln->super.super.ops.other += 1; /* estimator hack for nop plans */ cannam@167: cannam@167: return &(pln->super.super); cannam@167: } cannam@167: cannam@167: /* constructor */ cannam@167: static solver *mksolver(void) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: void X(dft_r2hc_register)(planner *p) cannam@167: { cannam@167: REGISTER_SOLVER(p, mksolver()); cannam@167: }