cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: /* direct DFT solver, if we have a codelet */ cannam@167: cannam@167: #include "dft/dft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: const kdft_desc *desc; cannam@167: kdft k; cannam@167: int bufferedp; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_dft super; cannam@167: cannam@167: stride is, os, bufstride; cannam@167: INT n, vl, ivs, ovs; cannam@167: kdft k; cannam@167: const S *slv; cannam@167: } P; cannam@167: cannam@167: static void dobatch(const P *ego, R *ri, R *ii, R *ro, R *io, cannam@167: R *buf, INT batchsz) cannam@167: { cannam@167: X(cpy2d_pair_ci)(ri, ii, buf, buf+1, cannam@167: ego->n, WS(ego->is, 1), WS(ego->bufstride, 1), cannam@167: batchsz, ego->ivs, 2); cannam@167: cannam@167: if (IABS(WS(ego->os, 1)) < IABS(ego->ovs)) { cannam@167: /* transform directly to output */ cannam@167: ego->k(buf, buf+1, ro, io, cannam@167: ego->bufstride, ego->os, batchsz, 2, ego->ovs); cannam@167: } else { cannam@167: /* transform to buffer and copy back */ cannam@167: ego->k(buf, buf+1, buf, buf+1, cannam@167: ego->bufstride, ego->bufstride, batchsz, 2, 2); cannam@167: X(cpy2d_pair_co)(buf, buf+1, ro, io, cannam@167: ego->n, WS(ego->bufstride, 1), WS(ego->os, 1), cannam@167: batchsz, 2, ego->ovs); cannam@167: } cannam@167: } cannam@167: cannam@167: static INT compute_batchsize(INT n) cannam@167: { cannam@167: /* round up to multiple of 4 */ cannam@167: n += 3; cannam@167: n &= -4; cannam@167: cannam@167: return (n + 2); cannam@167: } cannam@167: cannam@167: static void apply_buf(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: R *buf; cannam@167: INT vl = ego->vl, n = ego->n, batchsz = compute_batchsize(n); cannam@167: INT i; cannam@167: size_t bufsz = n * batchsz * 2 * sizeof(R); cannam@167: cannam@167: BUF_ALLOC(R *, buf, bufsz); cannam@167: cannam@167: for (i = 0; i < vl - batchsz; i += batchsz) { cannam@167: dobatch(ego, ri, ii, ro, io, buf, batchsz); cannam@167: ri += batchsz * ego->ivs; ii += batchsz * ego->ivs; cannam@167: ro += batchsz * ego->ovs; io += batchsz * ego->ovs; cannam@167: } cannam@167: dobatch(ego, ri, ii, ro, io, buf, vl - i); cannam@167: cannam@167: BUF_FREE(buf, bufsz); cannam@167: } cannam@167: cannam@167: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: ASSERT_ALIGNED_DOUBLE; cannam@167: ego->k(ri, ii, ro, io, ego->is, ego->os, ego->vl, ego->ivs, ego->ovs); cannam@167: } cannam@167: cannam@167: static void apply_extra_iter(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: INT vl = ego->vl; cannam@167: cannam@167: ASSERT_ALIGNED_DOUBLE; cannam@167: cannam@167: /* for 4-way SIMD when VL is odd: iterate over an cannam@167: even vector length VL, and then execute the last cannam@167: iteration as a 2-vector with vector stride 0. */ cannam@167: ego->k(ri, ii, ro, io, ego->is, ego->os, vl - 1, ego->ivs, ego->ovs); cannam@167: cannam@167: ego->k(ri + (vl - 1) * ego->ivs, ii + (vl - 1) * ego->ivs, cannam@167: ro + (vl - 1) * ego->ovs, io + (vl - 1) * ego->ovs, cannam@167: ego->is, ego->os, 1, 0, 0); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(stride_destroy)(ego->is); cannam@167: X(stride_destroy)(ego->os); cannam@167: X(stride_destroy)(ego->bufstride); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: const S *s = ego->slv; cannam@167: const kdft_desc *d = s->desc; cannam@167: cannam@167: if (ego->slv->bufferedp) cannam@167: p->print(p, "(dft-directbuf/%D-%D%v \"%s\")", cannam@167: compute_batchsize(d->sz), d->sz, ego->vl, d->nam); cannam@167: else cannam@167: p->print(p, "(dft-direct-%D%v \"%s\")", d->sz, ego->vl, d->nam); cannam@167: } cannam@167: cannam@167: static int applicable_buf(const solver *ego_, const problem *p_, cannam@167: const planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: const kdft_desc *d = ego->desc; cannam@167: INT vl; cannam@167: INT ivs, ovs; cannam@167: INT batchsz; cannam@167: cannam@167: return ( cannam@167: 1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk == 1 cannam@167: && p->sz->dims[0].n == d->sz cannam@167: cannam@167: /* check strides etc */ cannam@167: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@167: cannam@167: /* UGLY if IS <= IVS */ cannam@167: && !(NO_UGLYP(plnr) && cannam@167: X(iabs)(p->sz->dims[0].is) <= X(iabs)(ivs)) cannam@167: cannam@167: && (batchsz = compute_batchsize(d->sz), 1) cannam@167: && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, cannam@167: 2 * batchsz, p->sz->dims[0].os, cannam@167: batchsz, 2, ovs, plnr)) cannam@167: && (d->genus->okp(d, 0, ((const R *)0) + 1, p->ro, p->io, cannam@167: 2 * batchsz, p->sz->dims[0].os, cannam@167: vl % batchsz, 2, ovs, plnr)) cannam@167: cannam@167: cannam@167: && (0 cannam@167: /* can operate out-of-place */ cannam@167: || p->ri != p->ro cannam@167: cannam@167: /* can operate in-place as long as strides are the same */ cannam@167: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@167: cannam@167: /* can do it if the problem fits in the buffer, no matter cannam@167: what the strides are */ cannam@167: || vl <= batchsz cannam@167: ) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int applicable(const solver *ego_, const problem *p_, cannam@167: const planner *plnr, int *extra_iterp) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: const kdft_desc *d = ego->desc; cannam@167: INT vl; cannam@167: INT ivs, ovs; cannam@167: cannam@167: return ( cannam@167: 1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: && p->sz->dims[0].n == d->sz cannam@167: cannam@167: /* check strides etc */ cannam@167: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@167: cannam@167: && ((*extra_iterp = 0, cannam@167: (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, cannam@167: p->sz->dims[0].is, p->sz->dims[0].os, cannam@167: vl, ivs, ovs, plnr))) cannam@167: || cannam@167: (*extra_iterp = 1, cannam@167: ((d->genus->okp(d, p->ri, p->ii, p->ro, p->io, cannam@167: p->sz->dims[0].is, p->sz->dims[0].os, cannam@167: vl - 1, ivs, ovs, plnr)) cannam@167: && cannam@167: (d->genus->okp(d, p->ri, p->ii, p->ro, p->io, cannam@167: p->sz->dims[0].is, p->sz->dims[0].os, cannam@167: 2, 0, 0, plnr))))) cannam@167: cannam@167: && (0 cannam@167: /* can operate out-of-place */ cannam@167: || p->ri != p->ro cannam@167: cannam@167: /* can always compute one transform */ cannam@167: || vl == 1 cannam@167: cannam@167: /* can operate in-place as long as strides are the same */ cannam@167: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@167: ) cannam@167: ); cannam@167: } cannam@167: cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: P *pln; cannam@167: const problem_dft *p; cannam@167: iodim *d; cannam@167: const kdft_desc *e = ego->desc; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(dft_solve), X(null_awake), print, destroy cannam@167: }; cannam@167: cannam@167: UNUSED(plnr); cannam@167: cannam@167: if (ego->bufferedp) { cannam@167: if (!applicable_buf(ego_, p_, plnr)) cannam@167: return (plan *)0; cannam@167: pln = MKPLAN_DFT(P, &padt, apply_buf); cannam@167: } else { cannam@167: int extra_iterp = 0; cannam@167: if (!applicable(ego_, p_, plnr, &extra_iterp)) cannam@167: return (plan *)0; cannam@167: pln = MKPLAN_DFT(P, &padt, extra_iterp ? apply_extra_iter : apply); cannam@167: } cannam@167: cannam@167: p = (const problem_dft *) p_; cannam@167: d = p->sz->dims; cannam@167: pln->k = ego->k; cannam@167: pln->n = d[0].n; cannam@167: pln->is = X(mkstride)(pln->n, d[0].is); cannam@167: pln->os = X(mkstride)(pln->n, d[0].os); cannam@167: pln->bufstride = X(mkstride)(pln->n, 2 * compute_batchsize(pln->n)); cannam@167: cannam@167: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@167: pln->slv = ego; cannam@167: cannam@167: X(ops_zero)(&pln->super.super.ops); cannam@167: X(ops_madd2)(pln->vl / e->genus->vl, &e->ops, &pln->super.super.ops); cannam@167: cannam@167: if (ego->bufferedp) cannam@167: pln->super.super.ops.other += 4 * pln->n * pln->vl; cannam@167: cannam@167: pln->super.super.could_prune_now_p = !ego->bufferedp; cannam@167: return &(pln->super.super); cannam@167: } cannam@167: cannam@167: static solver *mksolver(kdft k, const kdft_desc *desc, int bufferedp) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: slv->k = k; cannam@167: slv->desc = desc; cannam@167: slv->bufferedp = bufferedp; cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: solver *X(mksolver_dft_direct)(kdft k, const kdft_desc *desc) cannam@167: { cannam@167: return mksolver(k, desc, 0); cannam@167: } cannam@167: cannam@167: solver *X(mksolver_dft_directbuf)(kdft k, const kdft_desc *desc) cannam@167: { cannam@167: return mksolver(k, desc, 1); cannam@167: }