cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: /* plans for distributed out-of-place transpose using MPI_Alltoall, cannam@127: and which destroy the input array (unless TRANSPOSED_IN is used) */ cannam@127: cannam@127: #include "mpi-transpose.h" cannam@127: #include cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: int copy_transposed_in; /* whether to copy the input for TRANSPOSED_IN, cannam@127: which makes the final transpose out-of-place cannam@127: but costs an extra copy and requires us cannam@127: to destroy the input */ cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_mpi_transpose super; cannam@127: cannam@127: plan *cld1, *cld2, *cld2rest, *cld3; cannam@127: cannam@127: MPI_Comm comm; cannam@127: int *send_block_sizes, *send_block_offsets; cannam@127: int *recv_block_sizes, *recv_block_offsets; cannam@127: cannam@127: INT rest_Ioff, rest_Ooff; cannam@127: cannam@127: int equal_blocks; cannam@127: } P; cannam@127: cannam@127: static void apply(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: plan_rdft *cld1, *cld2, *cld2rest, *cld3; cannam@127: cannam@127: /* transpose locally to get contiguous chunks */ cannam@127: cld1 = (plan_rdft *) ego->cld1; cannam@127: if (cld1) { cannam@127: cld1->apply(ego->cld1, I, O); cannam@127: cannam@127: /* transpose chunks globally */ cannam@127: if (ego->equal_blocks) cannam@127: MPI_Alltoall(O, ego->send_block_sizes[0], FFTW_MPI_TYPE, cannam@127: I, ego->recv_block_sizes[0], FFTW_MPI_TYPE, cannam@127: ego->comm); cannam@127: else cannam@127: MPI_Alltoallv(O, ego->send_block_sizes, ego->send_block_offsets, cannam@127: FFTW_MPI_TYPE, cannam@127: I, ego->recv_block_sizes, ego->recv_block_offsets, cannam@127: FFTW_MPI_TYPE, cannam@127: ego->comm); cannam@127: } cannam@127: else { /* TRANSPOSED_IN, no need to destroy input */ cannam@127: /* transpose chunks globally */ cannam@127: if (ego->equal_blocks) cannam@127: MPI_Alltoall(I, ego->send_block_sizes[0], FFTW_MPI_TYPE, cannam@127: O, ego->recv_block_sizes[0], FFTW_MPI_TYPE, cannam@127: ego->comm); cannam@127: else cannam@127: MPI_Alltoallv(I, ego->send_block_sizes, ego->send_block_offsets, cannam@127: FFTW_MPI_TYPE, cannam@127: O, ego->recv_block_sizes, ego->recv_block_offsets, cannam@127: FFTW_MPI_TYPE, cannam@127: ego->comm); cannam@127: I = O; /* final transpose (if any) is in-place */ cannam@127: } cannam@127: cannam@127: /* transpose locally, again, to get ordinary row-major */ cannam@127: cld2 = (plan_rdft *) ego->cld2; cannam@127: if (cld2) { cannam@127: cld2->apply(ego->cld2, I, O); cannam@127: cld2rest = (plan_rdft *) ego->cld2rest; cannam@127: if (cld2rest) { /* leftover from unequal block sizes */ cannam@127: cld2rest->apply(ego->cld2rest, cannam@127: I + ego->rest_Ioff, O + ego->rest_Ooff); cannam@127: cld3 = (plan_rdft *) ego->cld3; cannam@127: if (cld3) cannam@127: cld3->apply(ego->cld3, O, O); cannam@127: /* else TRANSPOSED_OUT is true and user wants O transposed */ cannam@127: } cannam@127: } cannam@127: } cannam@127: cannam@127: static int applicable(const S *ego, const problem *p_, cannam@127: const planner *plnr) cannam@127: { cannam@127: const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_; cannam@127: return (1 cannam@127: && p->I != p->O cannam@127: && (!NO_DESTROY_INPUTP(plnr) || cannam@127: ((p->flags & TRANSPOSED_IN) && !ego->copy_transposed_in)) cannam@127: && ((p->flags & TRANSPOSED_IN) || !ego->copy_transposed_in) cannam@127: && ONLY_TRANSPOSEDP(p->flags) cannam@127: ); cannam@127: } cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_awake)(ego->cld1, wakefulness); cannam@127: X(plan_awake)(ego->cld2, wakefulness); cannam@127: X(plan_awake)(ego->cld2rest, wakefulness); cannam@127: X(plan_awake)(ego->cld3, wakefulness); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(ifree0)(ego->send_block_sizes); cannam@127: MPI_Comm_free(&ego->comm); cannam@127: X(plan_destroy_internal)(ego->cld3); cannam@127: X(plan_destroy_internal)(ego->cld2rest); cannam@127: X(plan_destroy_internal)(ego->cld2); cannam@127: X(plan_destroy_internal)(ego->cld1); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: p->print(p, "(mpi-transpose-alltoall%s%(%p%)%(%p%)%(%p%)%(%p%))", cannam@127: ego->equal_blocks ? "/e" : "", cannam@127: ego->cld1, ego->cld2, ego->cld2rest, ego->cld3); cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@127: { cannam@127: const S *ego = (const S *) ego_; cannam@127: const problem_mpi_transpose *p; cannam@127: P *pln; cannam@127: plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0; cannam@127: INT b, bt, vn, rest_Ioff, rest_Ooff; cannam@127: R *I; cannam@127: int *sbs, *sbo, *rbs, *rbo; cannam@127: int pe, my_pe, n_pes; cannam@127: int equal_blocks = 1; cannam@127: static const plan_adt padt = { cannam@127: XM(transpose_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: if (!applicable(ego, p_, plnr)) cannam@127: return (plan *) 0; cannam@127: cannam@127: p = (const problem_mpi_transpose *) p_; cannam@127: vn = p->vn; cannam@127: cannam@127: MPI_Comm_rank(p->comm, &my_pe); cannam@127: MPI_Comm_size(p->comm, &n_pes); cannam@127: cannam@127: b = XM(block)(p->nx, p->block, my_pe); cannam@127: cannam@127: if (p->flags & TRANSPOSED_IN) { /* I is already transposed */ cannam@127: if (ego->copy_transposed_in) { cannam@127: cld1 = X(mkplan_f_d)(plnr, cannam@127: X(mkproblem_rdft_0_d)(X(mktensor_1d) cannam@127: (b * p->ny * vn, 1, 1), cannam@127: I = p->I, p->O), cannam@127: 0, 0, NO_SLOW); cannam@127: if (XM(any_true)(!cld1, p->comm)) goto nada; cannam@127: } cannam@127: else cannam@127: I = p->O; /* final transpose is in-place */ cannam@127: } cannam@127: else { /* transpose b x ny x vn -> ny x b x vn */ cannam@127: cld1 = X(mkplan_f_d)(plnr, cannam@127: X(mkproblem_rdft_0_d)(X(mktensor_3d) cannam@127: (b, p->ny * vn, vn, cannam@127: p->ny, vn, b * vn, cannam@127: vn, 1, 1), cannam@127: I = p->I, p->O), cannam@127: 0, 0, NO_SLOW); cannam@127: if (XM(any_true)(!cld1, p->comm)) goto nada; cannam@127: } cannam@127: cannam@127: if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, p->O, my_pe, cannam@127: &cld2, &cld2rest, &cld3, cannam@127: &rest_Ioff, &rest_Ooff), cannam@127: p->comm)) goto nada; cannam@127: cannam@127: pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply); cannam@127: cannam@127: pln->cld1 = cld1; cannam@127: pln->cld2 = cld2; cannam@127: pln->cld2rest = cld2rest; cannam@127: pln->rest_Ioff = rest_Ioff; cannam@127: pln->rest_Ooff = rest_Ooff; cannam@127: pln->cld3 = cld3; cannam@127: cannam@127: MPI_Comm_dup(p->comm, &pln->comm); cannam@127: cannam@127: /* Compute sizes/offsets of blocks to send for all-to-all command. */ cannam@127: sbs = (int *) MALLOC(4 * n_pes * sizeof(int), PLANS); cannam@127: sbo = sbs + n_pes; cannam@127: rbs = sbo + n_pes; cannam@127: rbo = rbs + n_pes; cannam@127: b = XM(block)(p->nx, p->block, my_pe); cannam@127: bt = XM(block)(p->ny, p->tblock, my_pe); cannam@127: for (pe = 0; pe < n_pes; ++pe) { cannam@127: INT db, dbt; /* destination block sizes */ cannam@127: db = XM(block)(p->nx, p->block, pe); cannam@127: dbt = XM(block)(p->ny, p->tblock, pe); cannam@127: if (db != p->block || dbt != p->tblock) cannam@127: equal_blocks = 0; cannam@127: cannam@127: /* MPI requires type "int" here; apparently it cannam@127: has no 64-bit API? Grrr. */ cannam@127: sbs[pe] = (int) (b * dbt * vn); cannam@127: sbo[pe] = (int) (pe * (b * p->tblock) * vn); cannam@127: rbs[pe] = (int) (db * bt * vn); cannam@127: rbo[pe] = (int) (pe * (p->block * bt) * vn); cannam@127: } cannam@127: pln->send_block_sizes = sbs; cannam@127: pln->send_block_offsets = sbo; cannam@127: pln->recv_block_sizes = rbs; cannam@127: pln->recv_block_offsets = rbo; cannam@127: pln->equal_blocks = equal_blocks; cannam@127: cannam@127: X(ops_zero)(&pln->super.super.ops); cannam@127: if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops); cannam@127: if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops); cannam@127: if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops); cannam@127: if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops); cannam@127: /* FIXME: should MPI operations be counted in "other" somehow? */ cannam@127: cannam@127: return &(pln->super.super); cannam@127: cannam@127: nada: cannam@127: X(plan_destroy_internal)(cld3); cannam@127: X(plan_destroy_internal)(cld2rest); cannam@127: X(plan_destroy_internal)(cld2); cannam@127: X(plan_destroy_internal)(cld1); cannam@127: return (plan *) 0; cannam@127: } cannam@127: cannam@127: static solver *mksolver(int copy_transposed_in) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: slv->copy_transposed_in = copy_transposed_in; cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void XM(transpose_alltoall_register)(planner *p) cannam@127: { cannam@127: int cti; cannam@127: for (cti = 0; cti <= 1; ++cti) cannam@127: REGISTER_SOLVER(p, mksolver(cti)); cannam@127: }