cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: cannam@127: cannam@127: /* Plans for handling vector transform loops. These are *just* the cannam@127: loops, and rely on child plans for the actual DFTs. cannam@127: cannam@127: They form a wrapper around solvers that don't have apply functions cannam@127: for non-null vectors. cannam@127: cannam@127: vrank-geq1 plans also recursively handle the case of multi-dimensional cannam@127: vectors, obviating the need for most solvers to deal with this. We cannam@127: can also play games here, such as reordering the vector loops. cannam@127: cannam@127: Each vrank-geq1 plan reduces the vector rank by 1, picking out a cannam@127: dimension determined by the vecloop_dim field of the solver. */ cannam@127: cannam@127: #include "dft.h" cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: int vecloop_dim; cannam@127: const int *buddies; cannam@127: size_t nbuddies; cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_dft super; cannam@127: cannam@127: plan *cld; cannam@127: INT vl; cannam@127: INT ivs, ovs; cannam@127: const S *solver; cannam@127: } P; cannam@127: cannam@127: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT i, vl = ego->vl; cannam@127: INT ivs = ego->ivs, ovs = ego->ovs; cannam@127: dftapply cldapply = ((plan_dft *) ego->cld)->apply; cannam@127: cannam@127: for (i = 0; i < vl; ++i) { cannam@127: cldapply(ego->cld, cannam@127: ri + i * ivs, ii + i * ivs, ro + i * ovs, io + i * ovs); cannam@127: } cannam@127: } cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_awake)(ego->cld, wakefulness); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_destroy_internal)(ego->cld); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: const S *s = ego->solver; cannam@127: p->print(p, "(dft-vrank>=1-x%D/%d%(%p%))", cannam@127: ego->vl, s->vecloop_dim, ego->cld); cannam@127: } cannam@127: cannam@127: static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp) cannam@127: { cannam@127: return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies, cannam@127: vecsz, oop, dp); cannam@127: } cannam@127: cannam@127: static int applicable0(const solver *ego_, const problem *p_, int *dp) cannam@127: { cannam@127: const S *ego = (const S *) ego_; cannam@127: const problem_dft *p = (const problem_dft *) p_; cannam@127: cannam@127: return (1 cannam@127: && FINITE_RNK(p->vecsz->rnk) cannam@127: && p->vecsz->rnk > 0 cannam@127: cannam@127: /* do not bother looping over rank-0 problems, cannam@127: since they are handled via rdft */ cannam@127: && p->sz->rnk > 0 cannam@127: cannam@127: && pickdim(ego, p->vecsz, p->ri != p->ro, dp) cannam@127: ); cannam@127: } cannam@127: cannam@127: static int applicable(const solver *ego_, const problem *p_, cannam@127: const planner *plnr, int *dp) cannam@127: { cannam@127: const S *ego = (const S *)ego_; cannam@127: const problem_dft *p; cannam@127: cannam@127: if (!applicable0(ego_, p_, dp)) return 0; cannam@127: cannam@127: /* fftw2 behavior */ cannam@127: if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0])) cannam@127: return 0; cannam@127: cannam@127: p = (const problem_dft *) p_; cannam@127: cannam@127: if (NO_UGLYP(plnr)) { cannam@127: /* Heuristic: if the transform is multi-dimensional, and the cannam@127: vector stride is less than the transform size, then we cannam@127: probably want to use a rank>=2 plan first in order to combine cannam@127: this vector with the transform-dimension vectors. */ cannam@127: { cannam@127: iodim *d = p->vecsz->dims + *dp; cannam@127: if (1 cannam@127: && p->sz->rnk > 1 cannam@127: && X(imin)(X(iabs)(d->is), X(iabs)(d->os)) cannam@127: < X(tensor_max_index)(p->sz) cannam@127: ) cannam@127: return 0; cannam@127: } cannam@127: cannam@127: if (NO_NONTHREADEDP(plnr)) return 0; /* prefer threaded version */ cannam@127: } cannam@127: cannam@127: return 1; cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@127: { cannam@127: const S *ego = (const S *) ego_; cannam@127: const problem_dft *p; cannam@127: P *pln; cannam@127: plan *cld; cannam@127: int vdim; cannam@127: iodim *d; cannam@127: cannam@127: static const plan_adt padt = { cannam@127: X(dft_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: if (!applicable(ego_, p_, plnr, &vdim)) cannam@127: return (plan *) 0; cannam@127: p = (const problem_dft *) p_; cannam@127: cannam@127: d = p->vecsz->dims + vdim; cannam@127: cannam@127: A(d->n > 1); cannam@127: cld = X(mkplan_d)(plnr, cannam@127: X(mkproblem_dft_d)( cannam@127: X(tensor_copy)(p->sz), cannam@127: X(tensor_copy_except)(p->vecsz, vdim), cannam@127: TAINT(p->ri, d->is), TAINT(p->ii, d->is), cannam@127: TAINT(p->ro, d->os), TAINT(p->io, d->os))); cannam@127: if (!cld) return (plan *) 0; cannam@127: cannam@127: pln = MKPLAN_DFT(P, &padt, apply); cannam@127: cannam@127: pln->cld = cld; cannam@127: pln->vl = d->n; cannam@127: pln->ivs = d->is; cannam@127: pln->ovs = d->os; cannam@127: cannam@127: pln->solver = ego; cannam@127: X(ops_zero)(&pln->super.super.ops); cannam@127: pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */ cannam@127: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); cannam@127: cannam@127: if (p->sz->rnk != 1 || (p->sz->dims[0].n > 64)) cannam@127: pln->super.super.pcost = pln->vl * cld->pcost; cannam@127: cannam@127: return &(pln->super.super); cannam@127: } cannam@127: cannam@127: static solver *mksolver(int vecloop_dim, const int *buddies, size_t nbuddies) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: slv->vecloop_dim = vecloop_dim; cannam@127: slv->buddies = buddies; cannam@127: slv->nbuddies = nbuddies; cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void X(dft_vrank_geq1_register)(planner *p) cannam@127: { cannam@127: /* FIXME: Should we try other vecloop_dim values? */ cannam@127: static const int buddies[] = { 1, -1 }; cannam@127: size_t i; cannam@127: cannam@127: for (i = 0; i < NELEM(buddies); ++i) cannam@127: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); cannam@127: }