cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: #include "dft.h" cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_dft super; cannam@127: INT n; /* problem size */ cannam@127: INT nb; /* size of convolution */ cannam@127: R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */ cannam@127: R *W; /* DFT(w) */ cannam@127: plan *cldf; cannam@127: INT is, os; cannam@127: } P; cannam@127: cannam@127: static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w) cannam@127: { cannam@127: INT k, ksq, n2 = 2 * n; cannam@127: triggen *t = X(mktriggen)(wakefulness, n2); cannam@127: cannam@127: ksq = 0; cannam@127: for (k = 0; k < n; ++k) { cannam@127: t->cexp(t, ksq, w+2*k); cannam@127: /* careful with overflow */ cannam@127: ksq += 2*k + 1; while (ksq > n2) ksq -= n2; cannam@127: } cannam@127: cannam@127: X(triggen_destroy)(t); cannam@127: } cannam@127: cannam@127: static void mktwiddle(enum wakefulness wakefulness, P *p) cannam@127: { cannam@127: INT i; cannam@127: INT n = p->n, nb = p->nb; cannam@127: R *w, *W; cannam@127: E nbf = (E)nb; cannam@127: cannam@127: p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES); cannam@127: p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES); cannam@127: cannam@127: bluestein_sequence(wakefulness, n, w); cannam@127: cannam@127: for (i = 0; i < nb; ++i) cannam@127: W[2*i] = W[2*i+1] = K(0.0); cannam@127: cannam@127: W[0] = w[0] / nbf; cannam@127: W[1] = w[1] / nbf; cannam@127: cannam@127: for (i = 1; i < n; ++i) { cannam@127: W[2*i] = W[2*(nb-i)] = w[2*i] / nbf; cannam@127: W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf; cannam@127: } cannam@127: cannam@127: { cannam@127: plan_dft *cldf = (plan_dft *)p->cldf; cannam@127: /* cldf must be awake */ cannam@127: cldf->apply(p->cldf, W, W+1, W, W+1); cannam@127: } cannam@127: } cannam@127: cannam@127: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os; cannam@127: R *w = ego->w, *W = ego->W; cannam@127: R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); cannam@127: cannam@127: /* multiply input by conjugate bluestein sequence */ cannam@127: for (i = 0; i < n; ++i) { cannam@127: E xr = ri[i*is], xi = ii[i*is]; cannam@127: E wr = w[2*i], wi = w[2*i+1]; cannam@127: b[2*i] = xr * wr + xi * wi; cannam@127: b[2*i+1] = xi * wr - xr * wi; cannam@127: } cannam@127: cannam@127: for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0); cannam@127: cannam@127: /* convolution: FFT */ cannam@127: { cannam@127: plan_dft *cldf = (plan_dft *)ego->cldf; cannam@127: cldf->apply(ego->cldf, b, b+1, b, b+1); cannam@127: } cannam@127: cannam@127: /* convolution: pointwise multiplication */ cannam@127: for (i = 0; i < nb; ++i) { cannam@127: E xr = b[2*i], xi = b[2*i+1]; cannam@127: E wr = W[2*i], wi = W[2*i+1]; cannam@127: b[2*i] = xi * wr + xr * wi; cannam@127: b[2*i+1] = xr * wr - xi * wi; cannam@127: } cannam@127: cannam@127: /* convolution: IFFT by FFT with real/imag input/output swapped */ cannam@127: { cannam@127: plan_dft *cldf = (plan_dft *)ego->cldf; cannam@127: cldf->apply(ego->cldf, b, b+1, b, b+1); cannam@127: } cannam@127: cannam@127: /* multiply output by conjugate bluestein sequence */ cannam@127: for (i = 0; i < n; ++i) { cannam@127: E xi = b[2*i], xr = b[2*i+1]; cannam@127: E wr = w[2*i], wi = w[2*i+1]; cannam@127: ro[i*os] = xr * wr + xi * wi; cannam@127: io[i*os] = xi * wr - xr * wi; cannam@127: } cannam@127: cannam@127: X(ifree)(b); cannam@127: } cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: cannam@127: X(plan_awake)(ego->cldf, wakefulness); cannam@127: cannam@127: switch (wakefulness) { cannam@127: case SLEEPY: cannam@127: X(ifree0)(ego->w); ego->w = 0; cannam@127: X(ifree0)(ego->W); ego->W = 0; cannam@127: break; cannam@127: default: cannam@127: A(!ego->w); cannam@127: mktwiddle(wakefulness, ego); cannam@127: break; cannam@127: } cannam@127: } cannam@127: cannam@127: static int applicable(const solver *ego, const problem *p_, cannam@127: const planner *plnr) cannam@127: { cannam@127: const problem_dft *p = (const problem_dft *) p_; cannam@127: UNUSED(ego); cannam@127: return (1 cannam@127: && p->sz->rnk == 1 cannam@127: && p->vecsz->rnk == 0 cannam@127: /* FIXME: allow other sizes */ cannam@127: && X(is_prime)(p->sz->dims[0].n) cannam@127: cannam@127: /* FIXME: avoid infinite recursion of bluestein with itself. cannam@127: This works because all factors in child problems are 2, 3, 5 */ cannam@127: && p->sz->dims[0].n > 16 cannam@127: cannam@127: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW) cannam@127: ); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_destroy_internal)(ego->cldf); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *)ego_; cannam@127: p->print(p, "(dft-bluestein-%D/%D%(%p%))", cannam@127: ego->n, ego->nb, ego->cldf); cannam@127: } cannam@127: cannam@127: static INT choose_transform_size(INT minsz) cannam@127: { cannam@127: while (!X(factors_into_small_primes)(minsz)) cannam@127: ++minsz; cannam@127: return minsz; cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) cannam@127: { cannam@127: const problem_dft *p = (const problem_dft *) p_; cannam@127: P *pln; cannam@127: INT n, nb; cannam@127: plan *cldf = 0; cannam@127: R *buf = (R *) 0; cannam@127: cannam@127: static const plan_adt padt = { cannam@127: X(dft_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: if (!applicable(ego, p_, plnr)) cannam@127: return (plan *) 0; cannam@127: cannam@127: n = p->sz->dims[0].n; cannam@127: nb = choose_transform_size(2 * n - 1); cannam@127: buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); cannam@127: cannam@127: cldf = X(mkplan_f_d)(plnr, cannam@127: X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2), cannam@127: X(mktensor_1d)(1, 0, 0), cannam@127: buf, buf+1, cannam@127: buf, buf+1), cannam@127: NO_SLOW, 0, 0); cannam@127: if (!cldf) goto nada; cannam@127: cannam@127: X(ifree)(buf); cannam@127: cannam@127: pln = MKPLAN_DFT(P, &padt, apply); cannam@127: cannam@127: pln->n = n; cannam@127: pln->nb = nb; cannam@127: pln->w = 0; cannam@127: pln->W = 0; cannam@127: pln->cldf = cldf; cannam@127: pln->is = p->sz->dims[0].is; cannam@127: pln->os = p->sz->dims[0].os; cannam@127: cannam@127: X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops); cannam@127: pln->super.super.ops.add += 4 * n + 2 * nb; cannam@127: pln->super.super.ops.mul += 8 * n + 4 * nb; cannam@127: pln->super.super.ops.other += 6 * (n + nb); cannam@127: cannam@127: return &(pln->super.super); cannam@127: cannam@127: nada: cannam@127: X(ifree0)(buf); cannam@127: X(plan_destroy_internal)(cldf); cannam@127: return (plan *)0; cannam@127: } cannam@127: cannam@127: cannam@127: static solver *mksolver(void) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void X(dft_bluestein_register)(planner *p) cannam@127: { cannam@127: REGISTER_SOLVER(p, mksolver()); cannam@127: }