cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: /* plans for RDFT of rank >= 2 (multidimensional) */ cannam@95: cannam@95: /* FIXME: this solver cannot strictly be applied to multidimensional cannam@95: DHTs, since the latter are not separable...up to rnk-1 additional cannam@95: post-processing passes may be required. See also: cannam@95: cannam@95: R. N. Bracewell, O. Buneman, H. Hao, and J. Villasenor, "Fast cannam@95: two-dimensional Hartley transform," Proc. IEEE 74, 1282-1283 (1986). cannam@95: cannam@95: H. Hao and R. N. Bracewell, "A three-dimensional DFT algorithm cannam@95: using the fast Hartley transform," Proc. IEEE 75(2), 264-266 (1987). cannam@95: */ cannam@95: cannam@95: #include "rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: int spltrnk; cannam@95: const int *buddies; cannam@95: int nbuddies; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: cannam@95: plan *cld1, *cld2; cannam@95: const S *solver; cannam@95: } P; cannam@95: cannam@95: /* Compute multi-dimensional RDFT by applying the two cld plans cannam@95: (lower-rnk RDFTs). */ cannam@95: static void apply(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: plan_rdft *cld1, *cld2; cannam@95: cannam@95: cld1 = (plan_rdft *) ego->cld1; cannam@95: cld1->apply(ego->cld1, I, O); cannam@95: cannam@95: cld2 = (plan_rdft *) ego->cld2; cannam@95: cld2->apply(ego->cld2, O, O); cannam@95: } cannam@95: cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cld1, wakefulness); cannam@95: X(plan_awake)(ego->cld2, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld2); cannam@95: X(plan_destroy_internal)(ego->cld1); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: const S *s = ego->solver; cannam@95: p->print(p, "(rdft-rank>=2/%d%(%p%)%(%p%))", cannam@95: s->spltrnk, ego->cld1, ego->cld2); cannam@95: } cannam@95: cannam@95: static int picksplit(const S *ego, const tensor *sz, int *rp) cannam@95: { cannam@95: A(sz->rnk > 1); /* cannot split rnk <= 1 */ cannam@95: if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) cannam@95: return 0; cannam@95: *rp += 1; /* convert from dim. index to rank */ cannam@95: if (*rp >= sz->rnk) /* split must reduce rank */ cannam@95: return 0; cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_, int *rp) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: const S *ego = (const S *)ego_; cannam@95: return (1 cannam@95: && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) cannam@95: && p->sz->rnk >= 2 cannam@95: && picksplit(ego, p->sz, rp) cannam@95: ); cannam@95: } cannam@95: cannam@95: /* TODO: revise this. */ cannam@95: static int applicable(const solver *ego_, const problem *p_, cannam@95: const planner *plnr, int *rp) cannam@95: { cannam@95: const S *ego = (const S *)ego_; cannam@95: cannam@95: if (!applicable0(ego_, p_, rp)) return 0; cannam@95: cannam@95: if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) cannam@95: return 0; cannam@95: cannam@95: if (NO_UGLYP(plnr)) { cannam@95: /* Heuristic: if the vector stride is greater than the transform cannam@95: sz, don't use (prefer to do the vector loop first with a cannam@95: vrank-geq1 plan). */ cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: cannam@95: if (p->vecsz->rnk > 0 && cannam@95: X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) cannam@95: return 0; cannam@95: } cannam@95: cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_rdft *p; cannam@95: P *pln; cannam@95: plan *cld1 = 0, *cld2 = 0; cannam@95: tensor *sz1, *sz2, *vecszi, *sz2i; cannam@95: int spltrnk; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr, &spltrnk)) cannam@95: return (plan *) 0; cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); cannam@95: vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); cannam@95: sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); cannam@95: cannam@95: cld1 = X(mkplan_d)(plnr, cannam@95: X(mkproblem_rdft_d)(X(tensor_copy)(sz2), cannam@95: X(tensor_append)(p->vecsz, sz1), cannam@95: p->I, p->O, p->kind + spltrnk)); cannam@95: if (!cld1) goto nada; cannam@95: cannam@95: cld2 = X(mkplan_d)(plnr, cannam@95: X(mkproblem_rdft_d)( cannam@95: X(tensor_copy_inplace)(sz1, INPLACE_OS), cannam@95: X(tensor_append)(vecszi, sz2i), cannam@95: p->O, p->O, p->kind)); cannam@95: if (!cld2) goto nada; cannam@95: cannam@95: pln = MKPLAN_RDFT(P, &padt, apply); cannam@95: cannam@95: pln->cld1 = cld1; cannam@95: pln->cld2 = cld2; cannam@95: cannam@95: pln->solver = ego; cannam@95: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); cannam@95: cannam@95: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(plan_destroy_internal)(cld2); cannam@95: X(plan_destroy_internal)(cld1); cannam@95: X(tensor_destroy4)(sz2, sz1, vecszi, sz2i); cannam@95: return (plan *) 0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(int spltrnk, const int *buddies, int nbuddies) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->spltrnk = spltrnk; cannam@95: slv->buddies = buddies; cannam@95: slv->nbuddies = nbuddies; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(rdft_rank_geq2_register)(planner *p) cannam@95: { cannam@95: int i; cannam@95: static const int buddies[] = { 1, 0, -2 }; cannam@95: cannam@95: const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); cannam@95: cannam@95: for (i = 0; i < nbuddies; ++i) cannam@95: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); cannam@95: cannam@95: /* FIXME: Should we try more buddies? See also dft/rank-geq2. */ cannam@95: }