cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: #include "rdft.h" cannam@95: #include cannam@95: cannam@95: static void destroy(problem *ego_) cannam@95: { cannam@95: problem_rdft *ego = (problem_rdft *) ego_; cannam@95: #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR) cannam@95: X(ifree0)(ego->kind); cannam@95: #endif cannam@95: X(tensor_destroy2)(ego->vecsz, ego->sz); cannam@95: X(ifree)(ego_); cannam@95: } cannam@95: cannam@95: static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) cannam@95: { cannam@95: int i; cannam@95: for (i = 0; i < rnk; ++i) cannam@95: X(md5int)(m, kind[i]); cannam@95: } cannam@95: cannam@95: static void hash(const problem *p_, md5 *m) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: X(md5puts)(m, "rdft"); cannam@95: X(md5int)(m, p->I == p->O); cannam@95: kind_hash(m, p->kind, p->sz->rnk); cannam@95: X(md5int)(m, X(alignment_of)(p->I)); cannam@95: X(md5int)(m, X(alignment_of)(p->O)); cannam@95: X(tensor_md5)(m, p->sz); cannam@95: X(tensor_md5)(m, p->vecsz); cannam@95: } cannam@95: cannam@95: static void recur(const iodim *dims, int rnk, R *I) cannam@95: { cannam@95: if (rnk == RNK_MINFTY) cannam@95: return; cannam@95: else if (rnk == 0) cannam@95: I[0] = K(0.0); cannam@95: else if (rnk > 0) { cannam@95: INT i, n = dims[0].n, is = dims[0].is; cannam@95: cannam@95: if (rnk == 1) { cannam@95: /* this case is redundant but faster */ cannam@95: for (i = 0; i < n; ++i) cannam@95: I[i * is] = K(0.0); cannam@95: } else { cannam@95: for (i = 0; i < n; ++i) cannam@95: recur(dims + 1, rnk - 1, I + i * is); cannam@95: } cannam@95: } cannam@95: } cannam@95: cannam@95: void X(rdft_zerotens)(tensor *sz, R *I) cannam@95: { cannam@95: recur(sz->dims, sz->rnk, I); cannam@95: } cannam@95: cannam@95: #define KSTR_LEN 8 cannam@95: cannam@95: const char *X(rdft_kind_str)(rdft_kind kind) cannam@95: { cannam@95: static const char kstr[][KSTR_LEN] = { cannam@95: "r2hc", "r2hc01", "r2hc10", "r2hc11", cannam@95: "hc2r", "hc2r01", "hc2r10", "hc2r11", cannam@95: "dht", cannam@95: "redft00", "redft01", "redft10", "redft11", cannam@95: "rodft00", "rodft01", "rodft10", "rodft11" cannam@95: }; cannam@95: A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); cannam@95: return kstr[kind]; cannam@95: } cannam@95: cannam@95: static void print(const problem *ego_, printer *p) cannam@95: { cannam@95: const problem_rdft *ego = (const problem_rdft *) ego_; cannam@95: int i; cannam@95: p->print(p, "(rdft %d %D %T %T", cannam@95: X(alignment_of)(ego->I), cannam@95: (INT)(ego->O - ego->I), cannam@95: ego->sz, cannam@95: ego->vecsz); cannam@95: for (i = 0; i < ego->sz->rnk; ++i) cannam@95: p->print(p, " %d", (int)ego->kind[i]); cannam@95: p->print(p, ")"); cannam@95: } cannam@95: cannam@95: static void zero(const problem *ego_) cannam@95: { cannam@95: const problem_rdft *ego = (const problem_rdft *) ego_; cannam@95: tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); cannam@95: X(rdft_zerotens)(sz, UNTAINT(ego->I)); cannam@95: X(tensor_destroy)(sz); cannam@95: } cannam@95: cannam@95: static const problem_adt padt = cannam@95: { cannam@95: PROBLEM_RDFT, cannam@95: hash, cannam@95: zero, cannam@95: print, cannam@95: destroy cannam@95: }; cannam@95: cannam@95: /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be cannam@95: eliminated. REDFT/RODFT unit dimensions often have factors of 2.0 cannam@95: and suchlike from normalization and phases, although in principle cannam@95: these constant factors from different dimensions could be combined. */ cannam@95: static int nontrivial(const iodim *d, rdft_kind kind) cannam@95: { cannam@95: return (d->n > 1 || kind == R2HC11 || kind == HC2R11 cannam@95: || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); cannam@95: } cannam@95: cannam@95: problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, cannam@95: R *I, R *O, const rdft_kind *kind) cannam@95: { cannam@95: problem_rdft *ego; cannam@95: int rnk = sz->rnk; cannam@95: int i; cannam@95: cannam@95: A(X(tensor_kosherp)(sz)); cannam@95: A(X(tensor_kosherp)(vecsz)); cannam@95: A(FINITE_RNK(sz->rnk)); cannam@95: cannam@95: if (UNTAINT(I) == UNTAINT(O)) cannam@95: I = O = JOIN_TAINT(I, O); cannam@95: cannam@95: if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) cannam@95: return X(mkproblem_unsolvable)(); cannam@95: cannam@95: for (i = rnk = 0; i < sz->rnk; ++i) { cannam@95: A(sz->dims[i].n > 0); cannam@95: if (nontrivial(sz->dims + i, kind[i])) cannam@95: ++rnk; cannam@95: } cannam@95: cannam@95: #if defined(STRUCT_HACK_KR) cannam@95: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) cannam@95: + sizeof(rdft_kind) cannam@95: * (rnk > 0 ? rnk - 1 : 0), &padt); cannam@95: #elif defined(STRUCT_HACK_C99) cannam@95: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) cannam@95: + sizeof(rdft_kind) * rnk, &padt); cannam@95: #else cannam@95: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); cannam@95: ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS); cannam@95: #endif cannam@95: cannam@95: /* do compression and sorting as in X(tensor_compress), but take cannam@95: transform kind into account (sigh) */ cannam@95: ego->sz = X(mktensor)(rnk); cannam@95: for (i = rnk = 0; i < sz->rnk; ++i) { cannam@95: if (nontrivial(sz->dims + i, kind[i])) { cannam@95: ego->kind[rnk] = kind[i]; cannam@95: ego->sz->dims[rnk++] = sz->dims[i]; cannam@95: } cannam@95: } cannam@95: for (i = 0; i + 1 < rnk; ++i) { cannam@95: int j; cannam@95: for (j = i + 1; j < rnk; ++j) cannam@95: if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { cannam@95: iodim dswap; cannam@95: rdft_kind kswap; cannam@95: dswap = ego->sz->dims[i]; cannam@95: ego->sz->dims[i] = ego->sz->dims[j]; cannam@95: ego->sz->dims[j] = dswap; cannam@95: kswap = ego->kind[i]; cannam@95: ego->kind[i] = ego->kind[j]; cannam@95: ego->kind[j] = kswap; cannam@95: } cannam@95: } cannam@95: cannam@95: for (i = 0; i < rnk; ++i) cannam@95: if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 cannam@95: || ego->kind[i] == DHT cannam@95: || ego->kind[i] == HC2R)) cannam@95: ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ cannam@95: cannam@95: ego->vecsz = X(tensor_compress_contiguous)(vecsz); cannam@95: ego->I = I; cannam@95: ego->O = O; cannam@95: cannam@95: A(FINITE_RNK(ego->sz->rnk)); cannam@95: cannam@95: return &(ego->super); cannam@95: } cannam@95: cannam@95: /* Same as X(mkproblem_rdft), but also destroy input tensors. */ cannam@95: problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, cannam@95: R *I, R *O, const rdft_kind *kind) cannam@95: { cannam@95: problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); cannam@95: X(tensor_destroy2)(vecsz, sz); cannam@95: return p; cannam@95: } cannam@95: cannam@95: /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ cannam@95: problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, cannam@95: R *I, R *O, rdft_kind kind) cannam@95: { cannam@95: A(sz->rnk <= 1); cannam@95: return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); cannam@95: } cannam@95: cannam@95: problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, cannam@95: R *I, R *O, rdft_kind kind) cannam@95: { cannam@95: A(sz->rnk <= 1); cannam@95: return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); cannam@95: } cannam@95: cannam@95: /* create a zero-dimensional problem */ cannam@95: problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) cannam@95: { cannam@95: return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, cannam@95: (const rdft_kind *)0); cannam@95: }