cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: /* Complex RDFTs of rank >= 2, for the case where we are distributed cannam@95: across the first dimension only, and the output is not transposed. */ cannam@95: cannam@95: #include "mpi-rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_mpi_rdft super; cannam@95: cannam@95: plan *cld1, *cld2; cannam@95: int preserve_input; cannam@95: } P; cannam@95: cannam@95: static void apply(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: plan_rdft *cld1, *cld2; cannam@95: cannam@95: /* RDFT local dimensions */ cannam@95: cld1 = (plan_rdft *) ego->cld1; cannam@95: if (ego->preserve_input) { cannam@95: cld1->apply(ego->cld1, I, O); cannam@95: I = O; cannam@95: } cannam@95: else cannam@95: cld1->apply(ego->cld1, I, I); cannam@95: cannam@95: /* RDFT non-local dimension (via rdft-rank1-bigvec, usually): */ cannam@95: cld2 = (plan_rdft *) ego->cld2; cannam@95: cld2->apply(ego->cld2, I, O); cannam@95: } cannam@95: cannam@95: static int applicable(const S *ego, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_; cannam@95: return (1 cannam@95: && p->sz->rnk > 1 cannam@95: && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */ cannam@95: && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) cannam@95: && p->I != p->O)) cannam@95: && XM(is_local_after)(1, p->sz, IB) cannam@95: && XM(is_local_after)(1, p->sz, OB) cannam@95: && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */ cannam@95: || !XM(rdft_serial_applicable)(p)) cannam@95: ); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cld1, wakefulness); cannam@95: X(plan_awake)(ego->cld2, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld2); cannam@95: X(plan_destroy_internal)(ego->cld1); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(mpi-rdft-rank-geq2%s%(%p%)%(%p%))", cannam@95: ego->preserve_input==2 ?"/p":"", ego->cld1, ego->cld2); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_mpi_rdft *p; cannam@95: P *pln; cannam@95: plan *cld1 = 0, *cld2 = 0; cannam@95: R *I, *O, *I2; cannam@95: tensor *sz; cannam@95: dtensor *sz2; cannam@95: int i, my_pe, n_pes; cannam@95: INT nrest; cannam@95: static const plan_adt padt = { cannam@95: XM(rdft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: UNUSED(ego); cannam@95: cannam@95: if (!applicable(ego, p_, plnr)) cannam@95: return (plan *) 0; cannam@95: cannam@95: p = (const problem_mpi_rdft *) p_; cannam@95: cannam@95: I2 = I = p->I; cannam@95: O = p->O; cannam@95: if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) cannam@95: I = O; cannam@95: MPI_Comm_rank(p->comm, &my_pe); cannam@95: MPI_Comm_size(p->comm, &n_pes); cannam@95: cannam@95: sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ cannam@95: i = p->sz->rnk - 2; A(i >= 0); cannam@95: sz->dims[i].n = p->sz->dims[i+1].n; cannam@95: sz->dims[i].is = sz->dims[i].os = p->vn; cannam@95: for (--i; i >= 0; --i) { cannam@95: sz->dims[i].n = p->sz->dims[i+1].n; cannam@95: sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; cannam@95: } cannam@95: nrest = X(tensor_sz)(sz); cannam@95: { cannam@95: INT is = sz->dims[0].n * sz->dims[0].is; cannam@95: INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe); cannam@95: cld1 = X(mkplan_d)(plnr, cannam@95: X(mkproblem_rdft_d)(sz, cannam@95: X(mktensor_2d)(b, is, is, cannam@95: p->vn, 1, 1), cannam@95: I2, I, p->kind + 1)); cannam@95: if (XM(any_true)(!cld1, p->comm)) goto nada; cannam@95: } cannam@95: cannam@95: sz2 = XM(mkdtensor)(1); /* tensor for first (distributed) dimension */ cannam@95: sz2->dims[0] = p->sz->dims[0]; cannam@95: cld2 = X(mkplan_d)(plnr, XM(mkproblem_rdft_d)(sz2, nrest * p->vn, cannam@95: I, O, cannam@95: p->comm, p->kind, cannam@95: RANK1_BIGVEC_ONLY)); cannam@95: if (XM(any_true)(!cld2, p->comm)) goto nada; cannam@95: cannam@95: pln = MKPLAN_MPI_RDFT(P, &padt, apply); cannam@95: pln->cld1 = cld1; cannam@95: pln->cld2 = cld2; cannam@95: pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); cannam@95: cannam@95: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(plan_destroy_internal)(cld2); cannam@95: X(plan_destroy_internal)(cld1); cannam@95: return (plan *) 0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(int preserve_input) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->preserve_input = preserve_input; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void XM(rdft_rank_geq2_register)(planner *p) cannam@95: { cannam@95: int preserve_input; cannam@95: for (preserve_input = 0; preserve_input <= 1; ++preserve_input) cannam@95: REGISTER_SOLVER(p, mksolver(preserve_input)); cannam@95: }