cannam@95: cannam@95: cannam@95: Real-data DFTs - FFTW 3.3.3 cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95: cannam@95:
cannam@95: cannam@95: cannam@95:

cannam@95: Next: , cannam@95: Previous: Planner Flags, cannam@95: Up: Basic Interface cannam@95:


cannam@95:
cannam@95: cannam@95:

4.3.3 Real-data DFTs

cannam@95: cannam@95:
     fftw_plan fftw_plan_dft_r2c_1d(int n0,
cannam@95:                                     double *in, fftw_complex *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_r2c_2d(int n0, int n1,
cannam@95:                                     double *in, fftw_complex *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_r2c_3d(int n0, int n1, int n2,
cannam@95:                                     double *in, fftw_complex *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_r2c(int rank, const int *n,
cannam@95:                                  double *in, fftw_complex *out,
cannam@95:                                  unsigned flags);
cannam@95: 
cannam@95:

cannam@95: Plan a real-input/complex-output discrete Fourier transform (DFT) in cannam@95: zero or more dimensions, returning an fftw_plan (see Using Plans). cannam@95: cannam@95:

Once you have created a plan for a certain transform type and cannam@95: parameters, then creating another plan of the same type and parameters, cannam@95: but for different arrays, is fast and shares constant data with the cannam@95: first plan (if it still exists). cannam@95: cannam@95:

The planner returns NULL if the plan cannot be created. A cannam@95: non-NULL plan is always returned by the basic interface unless cannam@95: you are using a customized FFTW configuration supporting a restricted cannam@95: set of transforms, or if you use the FFTW_PRESERVE_INPUT flag cannam@95: with a multi-dimensional out-of-place c2r transform (see below). cannam@95: cannam@95:

Arguments
cannam@95: cannam@95: cannam@95: cannam@95:

The inverse transforms, taking complex input (storing the non-redundant cannam@95: half of a logically Hermitian array) to real output, are given by: cannam@95: cannam@95:

     fftw_plan fftw_plan_dft_c2r_1d(int n0,
cannam@95:                                     fftw_complex *in, double *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_c2r_2d(int n0, int n1,
cannam@95:                                     fftw_complex *in, double *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_c2r_3d(int n0, int n1, int n2,
cannam@95:                                     fftw_complex *in, double *out,
cannam@95:                                     unsigned flags);
cannam@95:      fftw_plan fftw_plan_dft_c2r(int rank, const int *n,
cannam@95:                                  fftw_complex *in, double *out,
cannam@95:                                  unsigned flags);
cannam@95: 
cannam@95:

cannam@95: The arguments are the same as for the r2c transforms, except that the cannam@95: input and output data formats are reversed. cannam@95: cannam@95:

FFTW computes an unnormalized transform: computing an r2c followed by a cannam@95: c2r transform (or vice versa) will result in the original data cannam@95: multiplied by the size of the transform (the product of the logical cannam@95: dimensions). cannam@95: An r2c transform produces the same output as a FFTW_FORWARD cannam@95: complex DFT of the same input, and a c2r transform is correspondingly cannam@95: equivalent to FFTW_BACKWARD. For more information, see What FFTW Really Computes. cannam@95: cannam@95: cannam@95: cannam@95: