cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: cannam@95: /* Plans for handling vector transform loops. These are *just* the cannam@95: loops, and rely on child plans for the actual DFTs. cannam@95: cannam@95: They form a wrapper around solvers that don't have apply functions cannam@95: for non-null vectors. cannam@95: cannam@95: vrank-geq1 plans also recursively handle the case of multi-dimensional cannam@95: vectors, obviating the need for most solvers to deal with this. We cannam@95: can also play games here, such as reordering the vector loops. cannam@95: cannam@95: Each vrank-geq1 plan reduces the vector rank by 1, picking out a cannam@95: dimension determined by the vecloop_dim field of the solver. */ cannam@95: cannam@95: #include "dft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: int vecloop_dim; cannam@95: const int *buddies; cannam@95: int nbuddies; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_dft super; cannam@95: cannam@95: plan *cld; cannam@95: INT vl; cannam@95: INT ivs, ovs; cannam@95: const S *solver; cannam@95: } P; cannam@95: cannam@95: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT i, vl = ego->vl; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs; cannam@95: dftapply cldapply = ((plan_dft *) ego->cld)->apply; cannam@95: cannam@95: for (i = 0; i < vl; ++i) { cannam@95: cldapply(ego->cld, cannam@95: ri + i * ivs, ii + i * ivs, ro + i * ovs, io + i * ovs); cannam@95: } cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: const S *s = ego->solver; cannam@95: p->print(p, "(dft-vrank>=1-x%D/%d%(%p%))", cannam@95: ego->vl, s->vecloop_dim, ego->cld); cannam@95: } cannam@95: cannam@95: static int pickdim(const S *ego, const tensor *vecsz, int oop, int *dp) cannam@95: { cannam@95: return X(pickdim)(ego->vecloop_dim, ego->buddies, ego->nbuddies, cannam@95: vecsz, oop, dp); cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_, int *dp) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: cannam@95: return (1 cannam@95: && FINITE_RNK(p->vecsz->rnk) cannam@95: && p->vecsz->rnk > 0 cannam@95: cannam@95: /* do not bother looping over rank-0 problems, cannam@95: since they are handled via rdft */ cannam@95: && p->sz->rnk > 0 cannam@95: cannam@95: && pickdim(ego, p->vecsz, p->ri != p->ro, dp) cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego_, const problem *p_, cannam@95: const planner *plnr, int *dp) cannam@95: { cannam@95: const S *ego = (const S *)ego_; cannam@95: const problem_dft *p; cannam@95: cannam@95: if (!applicable0(ego_, p_, dp)) return 0; cannam@95: cannam@95: /* fftw2 behavior */ cannam@95: if (NO_VRANK_SPLITSP(plnr) && (ego->vecloop_dim != ego->buddies[0])) cannam@95: return 0; cannam@95: cannam@95: p = (const problem_dft *) p_; cannam@95: cannam@95: if (NO_UGLYP(plnr)) { cannam@95: /* Heuristic: if the transform is multi-dimensional, and the cannam@95: vector stride is less than the transform size, then we cannam@95: probably want to use a rank>=2 plan first in order to combine cannam@95: this vector with the transform-dimension vectors. */ cannam@95: { cannam@95: iodim *d = p->vecsz->dims + *dp; cannam@95: if (1 cannam@95: && p->sz->rnk > 1 cannam@95: && X(imin)(X(iabs)(d->is), X(iabs)(d->os)) cannam@95: < X(tensor_max_index)(p->sz) cannam@95: ) cannam@95: return 0; cannam@95: } cannam@95: cannam@95: if (NO_NONTHREADEDP(plnr)) return 0; /* prefer threaded version */ cannam@95: } cannam@95: cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_dft *p; cannam@95: P *pln; cannam@95: plan *cld; cannam@95: int vdim; cannam@95: iodim *d; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(dft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr, &vdim)) cannam@95: return (plan *) 0; cannam@95: p = (const problem_dft *) p_; cannam@95: cannam@95: d = p->vecsz->dims + vdim; cannam@95: cannam@95: A(d->n > 1); cannam@95: cld = X(mkplan_d)(plnr, cannam@95: X(mkproblem_dft_d)( cannam@95: X(tensor_copy)(p->sz), cannam@95: X(tensor_copy_except)(p->vecsz, vdim), cannam@95: TAINT(p->ri, d->is), TAINT(p->ii, d->is), cannam@95: TAINT(p->ro, d->os), TAINT(p->io, d->os))); cannam@95: if (!cld) return (plan *) 0; cannam@95: cannam@95: pln = MKPLAN_DFT(P, &padt, apply); cannam@95: cannam@95: pln->cld = cld; cannam@95: pln->vl = d->n; cannam@95: pln->ivs = d->is; cannam@95: pln->ovs = d->os; cannam@95: cannam@95: pln->solver = ego; cannam@95: X(ops_zero)(&pln->super.super.ops); cannam@95: pln->super.super.ops.other = 3.14159; /* magic to prefer codelet loops */ cannam@95: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); cannam@95: cannam@95: if (p->sz->rnk != 1 || (p->sz->dims[0].n > 64)) cannam@95: pln->super.super.pcost = pln->vl * cld->pcost; cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: static solver *mksolver(int vecloop_dim, const int *buddies, int nbuddies) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->vecloop_dim = vecloop_dim; cannam@95: slv->buddies = buddies; cannam@95: slv->nbuddies = nbuddies; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(dft_vrank_geq1_register)(planner *p) cannam@95: { cannam@95: int i; cannam@95: cannam@95: /* FIXME: Should we try other vecloop_dim values? */ cannam@95: static const int buddies[] = { 1, -1 }; cannam@95: cannam@95: const int nbuddies = (int)(sizeof(buddies) / sizeof(buddies[0])); cannam@95: cannam@95: for (i = 0; i < nbuddies; ++i) cannam@95: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, nbuddies)); cannam@95: }