cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: cannam@95: /* solvers/plans for vectors of small DFT's that cannot be done cannam@95: in-place directly. Use a rank-0 plan to rearrange the data cannam@95: before or after the transform. Can also change an out-of-place cannam@95: plan into a copy + in-place (where the in-place transform cannam@95: is e.g. unit stride). */ cannam@95: cannam@95: /* FIXME: merge with rank-geq2.c(?), since this is just a special case cannam@95: of a rank split where the first/second transform has rank 0. */ cannam@95: cannam@95: #include "dft.h" cannam@95: cannam@95: typedef problem *(*mkcld_t) (const problem_dft *p); cannam@95: cannam@95: typedef struct { cannam@95: dftapply apply; cannam@95: problem *(*mkcld)(const problem_dft *p); cannam@95: const char *nam; cannam@95: } ndrct_adt; cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: const ndrct_adt *adt; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_dft super; cannam@95: plan *cldcpy, *cld; cannam@95: const S *slv; cannam@95: } P; cannam@95: cannam@95: /*-----------------------------------------------------------------------*/ cannam@95: /* first rearrange, then transform */ cannam@95: static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: cannam@95: { cannam@95: plan_dft *cldcpy = (plan_dft *) ego->cldcpy; cannam@95: cldcpy->apply(ego->cldcpy, ri, ii, ro, io); cannam@95: } cannam@95: { cannam@95: plan_dft *cld = (plan_dft *) ego->cld; cannam@95: cld->apply(ego->cld, ro, io, ro, io); cannam@95: } cannam@95: } cannam@95: cannam@95: static problem *mkcld_before(const problem_dft *p) cannam@95: { cannam@95: return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS), cannam@95: X(tensor_copy_inplace)(p->vecsz, INPLACE_OS), cannam@95: p->ro, p->io, p->ro, p->io); cannam@95: } cannam@95: cannam@95: static const ndrct_adt adt_before = cannam@95: { cannam@95: apply_before, mkcld_before, "dft-indirect-before" cannam@95: }; cannam@95: cannam@95: /*-----------------------------------------------------------------------*/ cannam@95: /* first transform, then rearrange */ cannam@95: cannam@95: static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: cannam@95: { cannam@95: plan_dft *cld = (plan_dft *) ego->cld; cannam@95: cld->apply(ego->cld, ri, ii, ri, ii); cannam@95: } cannam@95: { cannam@95: plan_dft *cldcpy = (plan_dft *) ego->cldcpy; cannam@95: cldcpy->apply(ego->cldcpy, ri, ii, ro, io); cannam@95: } cannam@95: } cannam@95: cannam@95: static problem *mkcld_after(const problem_dft *p) cannam@95: { cannam@95: return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS), cannam@95: X(tensor_copy_inplace)(p->vecsz, INPLACE_IS), cannam@95: p->ri, p->ii, p->ri, p->ii); cannam@95: } cannam@95: cannam@95: static const ndrct_adt adt_after = cannam@95: { cannam@95: apply_after, mkcld_after, "dft-indirect-after" cannam@95: }; cannam@95: cannam@95: /*-----------------------------------------------------------------------*/ cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: X(plan_destroy_internal)(ego->cldcpy); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_awake)(ego->cldcpy, wakefulness); cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: const S *s = ego->slv; cannam@95: p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy); cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *) ego_; cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: return (1 cannam@95: && FINITE_RNK(p->vecsz->rnk) cannam@95: cannam@95: /* problem must be a nontrivial transform, not just a copy */ cannam@95: && p->sz->rnk > 0 cannam@95: cannam@95: && (0 cannam@95: cannam@95: /* problem must be in-place & require some cannam@95: rearrangement of the data; to prevent cannam@95: infinite loops with indirect-transpose, we cannam@95: further require that at least some transform cannam@95: strides must decrease */ cannam@95: || (p->ri == p->ro cannam@95: && !X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@95: && X(tensor_strides_decrease)( cannam@95: p->sz, p->vecsz, cannam@95: ego->adt->apply == apply_after ? cannam@95: INPLACE_IS : INPLACE_OS)) cannam@95: cannam@95: /* or problem must be out of place, transforming cannam@95: from stride 1/2 to bigger stride, for apply_after */ cannam@95: || (p->ri != p->ro && ego->adt->apply == apply_after cannam@95: && !NO_DESTROY_INPUTP(plnr) cannam@95: && X(tensor_min_istride)(p->sz) <= 2 cannam@95: && X(tensor_min_ostride)(p->sz) > 2) cannam@95: cannam@95: /* or problem must be out of place, transforming cannam@95: to stride 1/2 from bigger stride, for apply_before */ cannam@95: || (p->ri != p->ro && ego->adt->apply == apply_before cannam@95: && X(tensor_min_ostride)(p->sz) <= 2 cannam@95: && X(tensor_min_istride)(p->sz) > 2) cannam@95: ) cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego_, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: if (!applicable0(ego_, p_, plnr)) return 0; cannam@95: { cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; cannam@95: } cannam@95: return 1; cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const problem_dft *p = (const problem_dft *) p_; cannam@95: const S *ego = (const S *) ego_; cannam@95: P *pln; cannam@95: plan *cld = 0, *cldcpy = 0; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(dft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr)) cannam@95: return (plan *) 0; cannam@95: cannam@95: cldcpy = cannam@95: X(mkplan_d)(plnr, cannam@95: X(mkproblem_dft_d)(X(mktensor_0d)(), cannam@95: X(tensor_append)(p->vecsz, p->sz), cannam@95: p->ri, p->ii, p->ro, p->io)); cannam@95: cannam@95: if (!cldcpy) goto nada; cannam@95: cannam@95: cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0); cannam@95: if (!cld) goto nada; cannam@95: cannam@95: pln = MKPLAN_DFT(P, &padt, ego->adt->apply); cannam@95: pln->cld = cld; cannam@95: pln->cldcpy = cldcpy; cannam@95: pln->slv = ego; cannam@95: X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops); cannam@95: cannam@95: return &(pln->super.super); cannam@95: cannam@95: nada: cannam@95: X(plan_destroy_internal)(cld); cannam@95: X(plan_destroy_internal)(cldcpy); cannam@95: return (plan *)0; cannam@95: } cannam@95: cannam@95: static solver *mksolver(const ndrct_adt *adt) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->adt = adt; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(dft_indirect_register)(planner *p) cannam@95: { cannam@95: unsigned i; cannam@95: static const ndrct_adt *const adts[] = { cannam@95: &adt_before, &adt_after cannam@95: }; cannam@95: cannam@95: for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) cannam@95: REGISTER_SOLVER(p, mksolver(adts[i])); cannam@95: }