cannam@147: // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors cannam@147: // Licensed under the MIT License: cannam@147: // cannam@147: // Permission is hereby granted, free of charge, to any person obtaining a copy cannam@147: // of this software and associated documentation files (the "Software"), to deal cannam@147: // in the Software without restriction, including without limitation the rights cannam@147: // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cannam@147: // copies of the Software, and to permit persons to whom the Software is cannam@147: // furnished to do so, subject to the following conditions: cannam@147: // cannam@147: // The above copyright notice and this permission notice shall be included in cannam@147: // all copies or substantial portions of the Software. cannam@147: // cannam@147: // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR cannam@147: // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, cannam@147: // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE cannam@147: // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER cannam@147: // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, cannam@147: // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN cannam@147: // THE SOFTWARE. cannam@147: cannam@147: #ifndef KJ_MUTEX_H_ cannam@147: #define KJ_MUTEX_H_ cannam@147: cannam@147: #if defined(__GNUC__) && !KJ_HEADER_WARNINGS cannam@147: #pragma GCC system_header cannam@147: #endif cannam@147: cannam@147: #include "memory.h" cannam@147: #include cannam@147: cannam@147: #if __linux__ && !defined(KJ_USE_FUTEX) cannam@147: #define KJ_USE_FUTEX 1 cannam@147: #endif cannam@147: cannam@147: #if !KJ_USE_FUTEX && !_WIN32 cannam@147: // On Linux we use futex. On other platforms we wrap pthreads. cannam@147: // TODO(someday): Write efficient low-level locking primitives for other platforms. cannam@147: #include cannam@147: #endif cannam@147: cannam@147: namespace kj { cannam@147: cannam@147: // ======================================================================================= cannam@147: // Private details -- public interfaces follow below. cannam@147: cannam@147: namespace _ { // private cannam@147: cannam@147: class Mutex { cannam@147: // Internal implementation details. See `MutexGuarded`. cannam@147: cannam@147: public: cannam@147: Mutex(); cannam@147: ~Mutex(); cannam@147: KJ_DISALLOW_COPY(Mutex); cannam@147: cannam@147: enum Exclusivity { cannam@147: EXCLUSIVE, cannam@147: SHARED cannam@147: }; cannam@147: cannam@147: void lock(Exclusivity exclusivity); cannam@147: void unlock(Exclusivity exclusivity); cannam@147: cannam@147: void assertLockedByCaller(Exclusivity exclusivity); cannam@147: // In debug mode, assert that the mutex is locked by the calling thread, or if that is cannam@147: // non-trivial, assert that the mutex is locked (which should be good enough to catch problems cannam@147: // in unit tests). In non-debug builds, do nothing. cannam@147: cannam@147: private: cannam@147: #if KJ_USE_FUTEX cannam@147: uint futex; cannam@147: // bit 31 (msb) = set if exclusive lock held cannam@147: // bit 30 (msb) = set if threads are waiting for exclusive lock cannam@147: // bits 0-29 = count of readers; If an exclusive lock is held, this is the count of threads cannam@147: // waiting for a read lock, otherwise it is the count of threads that currently hold a read cannam@147: // lock. cannam@147: cannam@147: static constexpr uint EXCLUSIVE_HELD = 1u << 31; cannam@147: static constexpr uint EXCLUSIVE_REQUESTED = 1u << 30; cannam@147: static constexpr uint SHARED_COUNT_MASK = EXCLUSIVE_REQUESTED - 1; cannam@147: cannam@147: #elif _WIN32 cannam@147: uintptr_t srwLock; // Actually an SRWLOCK, but don't want to #include in header. cannam@147: cannam@147: #else cannam@147: mutable pthread_rwlock_t mutex; cannam@147: #endif cannam@147: }; cannam@147: cannam@147: class Once { cannam@147: // Internal implementation details. See `Lazy`. cannam@147: cannam@147: public: cannam@147: #if KJ_USE_FUTEX cannam@147: inline Once(bool startInitialized = false) cannam@147: : futex(startInitialized ? INITIALIZED : UNINITIALIZED) {} cannam@147: #else cannam@147: Once(bool startInitialized = false); cannam@147: ~Once(); cannam@147: #endif cannam@147: KJ_DISALLOW_COPY(Once); cannam@147: cannam@147: class Initializer { cannam@147: public: cannam@147: virtual void run() = 0; cannam@147: }; cannam@147: cannam@147: void runOnce(Initializer& init); cannam@147: cannam@147: #if _WIN32 // TODO(perf): Can we make this inline on win32 somehow? cannam@147: bool isInitialized() noexcept; cannam@147: cannam@147: #else cannam@147: inline bool isInitialized() noexcept { cannam@147: // Fast path check to see if runOnce() would simply return immediately. cannam@147: #if KJ_USE_FUTEX cannam@147: return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED; cannam@147: #else cannam@147: return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == INITIALIZED; cannam@147: #endif cannam@147: } cannam@147: #endif cannam@147: cannam@147: void reset(); cannam@147: // Returns the state from initialized to uninitialized. It is an error to call this when cannam@147: // not already initialized, or when runOnce() or isInitialized() might be called concurrently in cannam@147: // another thread. cannam@147: cannam@147: private: cannam@147: #if KJ_USE_FUTEX cannam@147: uint futex; cannam@147: cannam@147: enum State { cannam@147: UNINITIALIZED, cannam@147: INITIALIZING, cannam@147: INITIALIZING_WITH_WAITERS, cannam@147: INITIALIZED cannam@147: }; cannam@147: cannam@147: #elif _WIN32 cannam@147: uintptr_t initOnce; // Actually an INIT_ONCE, but don't want to #include in header. cannam@147: cannam@147: #else cannam@147: enum State { cannam@147: UNINITIALIZED, cannam@147: INITIALIZED cannam@147: }; cannam@147: State state; cannam@147: pthread_mutex_t mutex; cannam@147: #endif cannam@147: }; cannam@147: cannam@147: } // namespace _ (private) cannam@147: cannam@147: // ======================================================================================= cannam@147: // Public interface cannam@147: cannam@147: template cannam@147: class Locked { cannam@147: // Return type for `MutexGuarded::lock()`. `Locked` provides access to the bounded object cannam@147: // and unlocks the mutex when it goes out of scope. cannam@147: cannam@147: public: cannam@147: KJ_DISALLOW_COPY(Locked); cannam@147: inline Locked(): mutex(nullptr), ptr(nullptr) {} cannam@147: inline Locked(Locked&& other): mutex(other.mutex), ptr(other.ptr) { cannam@147: other.mutex = nullptr; cannam@147: other.ptr = nullptr; cannam@147: } cannam@147: inline ~Locked() { cannam@147: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@147: } cannam@147: cannam@147: inline Locked& operator=(Locked&& other) { cannam@147: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@147: mutex = other.mutex; cannam@147: ptr = other.ptr; cannam@147: other.mutex = nullptr; cannam@147: other.ptr = nullptr; cannam@147: return *this; cannam@147: } cannam@147: cannam@147: inline void release() { cannam@147: if (mutex != nullptr) mutex->unlock(isConst() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE); cannam@147: mutex = nullptr; cannam@147: ptr = nullptr; cannam@147: } cannam@147: cannam@147: inline T* operator->() { return ptr; } cannam@147: inline const T* operator->() const { return ptr; } cannam@147: inline T& operator*() { return *ptr; } cannam@147: inline const T& operator*() const { return *ptr; } cannam@147: inline T* get() { return ptr; } cannam@147: inline const T* get() const { return ptr; } cannam@147: inline operator T*() { return ptr; } cannam@147: inline operator const T*() const { return ptr; } cannam@147: cannam@147: private: cannam@147: _::Mutex* mutex; cannam@147: T* ptr; cannam@147: cannam@147: inline Locked(_::Mutex& mutex, T& value): mutex(&mutex), ptr(&value) {} cannam@147: cannam@147: template cannam@147: friend class MutexGuarded; cannam@147: }; cannam@147: cannam@147: template cannam@147: class MutexGuarded { cannam@147: // An object of type T, bounded by a mutex. In order to access the object, you must lock it. cannam@147: // cannam@147: // Write locks are not "recursive" -- trying to lock again in a thread that already holds a lock cannam@147: // will deadlock. Recursive write locks are usually a sign of bad design. cannam@147: // cannam@147: // Unfortunately, **READ LOCKS ARE NOT RECURSIVE** either. Common sense says they should be. cannam@147: // But on many operating systems (BSD, OSX), recursively read-locking a pthread_rwlock is cannam@147: // actually unsafe. The problem is that writers are "prioritized" over readers, so a read lock cannam@147: // request will block if any write lock requests are outstanding. So, if thread A takes a read cannam@147: // lock, thread B requests a write lock (and starts waiting), and then thread A tries to take cannam@147: // another read lock recursively, the result is deadlock. cannam@147: cannam@147: public: cannam@147: template cannam@147: explicit MutexGuarded(Params&&... params); cannam@147: // Initialize the mutex-bounded object by passing the given parameters to its constructor. cannam@147: cannam@147: Locked lockExclusive() const; cannam@147: // Exclusively locks the object and returns it. The returned `Locked` can be passed by cannam@147: // move, similar to `Own`. cannam@147: // cannam@147: // This method is declared `const` in accordance with KJ style rules which say that constness cannam@147: // should be used to indicate thread-safety. It is safe to share a const pointer between threads, cannam@147: // but it is not safe to share a mutable pointer. Since the whole point of MutexGuarded is to cannam@147: // be shared between threads, its methods should be const, even though locking it produces a cannam@147: // non-const pointer to the contained object. cannam@147: cannam@147: Locked lockShared() const; cannam@147: // Lock the value for shared access. Multiple shared locks can be taken concurrently, but cannot cannam@147: // be held at the same time as a non-shared lock. cannam@147: cannam@147: inline const T& getWithoutLock() const { return value; } cannam@147: inline T& getWithoutLock() { return value; } cannam@147: // Escape hatch for cases where some external factor guarantees that it's safe to get the cannam@147: // value. You should treat these like const_cast -- be highly suspicious of any use. cannam@147: cannam@147: inline const T& getAlreadyLockedShared() const; cannam@147: inline T& getAlreadyLockedShared(); cannam@147: inline T& getAlreadyLockedExclusive() const; cannam@147: // Like `getWithoutLock()`, but asserts that the lock is already held by the calling thread. cannam@147: cannam@147: private: cannam@147: mutable _::Mutex mutex; cannam@147: mutable T value; cannam@147: }; cannam@147: cannam@147: template cannam@147: class MutexGuarded { cannam@147: // MutexGuarded cannot guard a const type. This would be pointless anyway, and would complicate cannam@147: // the implementation of Locked, which uses constness to decide what kind of lock it holds. cannam@147: static_assert(sizeof(T) < 0, "MutexGuarded's type cannot be const."); cannam@147: }; cannam@147: cannam@147: template cannam@147: class Lazy { cannam@147: // A lazily-initialized value. cannam@147: cannam@147: public: cannam@147: template cannam@147: T& get(Func&& init); cannam@147: template cannam@147: const T& get(Func&& init) const; cannam@147: // The first thread to call get() will invoke the given init function to construct the value. cannam@147: // Other threads will block until construction completes, then return the same value. cannam@147: // cannam@147: // `init` is a functor(typically a lambda) which takes `SpaceFor&` as its parameter and returns cannam@147: // `Own`. If `init` throws an exception, the exception is propagated out of that thread's cannam@147: // call to `get()`, and subsequent calls behave as if `get()` hadn't been called at all yet -- cannam@147: // in other words, subsequent calls retry initialization until it succeeds. cannam@147: cannam@147: private: cannam@147: mutable _::Once once; cannam@147: mutable SpaceFor space; cannam@147: mutable Own value; cannam@147: cannam@147: template cannam@147: class InitImpl; cannam@147: }; cannam@147: cannam@147: // ======================================================================================= cannam@147: // Inline implementation details cannam@147: cannam@147: template cannam@147: template cannam@147: inline MutexGuarded::MutexGuarded(Params&&... params) cannam@147: : value(kj::fwd(params)...) {} cannam@147: cannam@147: template cannam@147: inline Locked MutexGuarded::lockExclusive() const { cannam@147: mutex.lock(_::Mutex::EXCLUSIVE); cannam@147: return Locked(mutex, value); cannam@147: } cannam@147: cannam@147: template cannam@147: inline Locked MutexGuarded::lockShared() const { cannam@147: mutex.lock(_::Mutex::SHARED); cannam@147: return Locked(mutex, value); cannam@147: } cannam@147: cannam@147: template cannam@147: inline const T& MutexGuarded::getAlreadyLockedShared() const { cannam@147: #ifdef KJ_DEBUG cannam@147: mutex.assertLockedByCaller(_::Mutex::SHARED); cannam@147: #endif cannam@147: return value; cannam@147: } cannam@147: template cannam@147: inline T& MutexGuarded::getAlreadyLockedShared() { cannam@147: #ifdef KJ_DEBUG cannam@147: mutex.assertLockedByCaller(_::Mutex::SHARED); cannam@147: #endif cannam@147: return value; cannam@147: } cannam@147: template cannam@147: inline T& MutexGuarded::getAlreadyLockedExclusive() const { cannam@147: #ifdef KJ_DEBUG cannam@147: mutex.assertLockedByCaller(_::Mutex::EXCLUSIVE); cannam@147: #endif cannam@147: return const_cast(value); cannam@147: } cannam@147: cannam@147: template cannam@147: template cannam@147: class Lazy::InitImpl: public _::Once::Initializer { cannam@147: public: cannam@147: inline InitImpl(const Lazy& lazy, Func&& func): lazy(lazy), func(kj::fwd(func)) {} cannam@147: cannam@147: void run() override { cannam@147: lazy.value = func(lazy.space); cannam@147: } cannam@147: cannam@147: private: cannam@147: const Lazy& lazy; cannam@147: Func func; cannam@147: }; cannam@147: cannam@147: template cannam@147: template cannam@147: inline T& Lazy::get(Func&& init) { cannam@147: if (!once.isInitialized()) { cannam@147: InitImpl initImpl(*this, kj::fwd(init)); cannam@147: once.runOnce(initImpl); cannam@147: } cannam@147: return *value; cannam@147: } cannam@147: cannam@147: template cannam@147: template cannam@147: inline const T& Lazy::get(Func&& init) const { cannam@147: if (!once.isInitialized()) { cannam@147: InitImpl initImpl(*this, kj::fwd(init)); cannam@147: once.runOnce(initImpl); cannam@147: } cannam@147: return *value; cannam@147: } cannam@147: cannam@147: } // namespace kj cannam@147: cannam@147: #endif // KJ_MUTEX_H_