Chris@12: /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ Chris@12: Chris@12: /* Chris@12: Vamp Chris@12: Chris@12: An API for audio analysis and feature extraction plugins. Chris@12: Chris@12: Centre for Digital Music, Queen Mary, University of London. Chris@12: Copyright 2006-2009 Chris Cannam and QMUL. Chris@12: Chris@12: Permission is hereby granted, free of charge, to any person Chris@12: obtaining a copy of this software and associated documentation Chris@12: files (the "Software"), to deal in the Software without Chris@12: restriction, including without limitation the rights to use, copy, Chris@12: modify, merge, publish, distribute, sublicense, and/or sell copies Chris@12: of the Software, and to permit persons to whom the Software is Chris@12: furnished to do so, subject to the following conditions: Chris@12: Chris@12: The above copyright notice and this permission notice shall be Chris@12: included in all copies or substantial portions of the Software. Chris@12: Chris@12: THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, Chris@12: EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF Chris@12: MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND Chris@12: NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR Chris@12: ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF Chris@12: CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION Chris@12: WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Chris@12: Chris@12: Except as contained in this notice, the names of the Centre for Chris@12: Digital Music; Queen Mary, University of London; and Chris Cannam Chris@12: shall not be used in advertising or otherwise to promote the sale, Chris@12: use or other dealings in this Software without prior written Chris@12: authorization. Chris@12: */ Chris@12: Chris@12: #include "FixedTempoEstimator.h" Chris@12: Chris@12: using std::string; Chris@12: using std::vector; Chris@12: using std::cerr; Chris@12: using std::endl; Chris@12: Chris@12: using Vamp::RealTime; Chris@12: Chris@12: #include Chris@12: #include Chris@12: Chris@12: Chris@12: class FixedTempoEstimator::D Chris@12: // this class just avoids us having to declare any data members in the header Chris@12: { Chris@12: public: Chris@12: D(float inputSampleRate); Chris@12: ~D(); Chris@12: Chris@12: size_t getPreferredStepSize() const { return 64; } Chris@12: size_t getPreferredBlockSize() const { return 256; } Chris@12: Chris@12: ParameterList getParameterDescriptors() const; Chris@12: float getParameter(string id) const; Chris@12: void setParameter(string id, float value); Chris@12: Chris@12: OutputList getOutputDescriptors() const; Chris@12: Chris@12: bool initialise(size_t channels, size_t stepSize, size_t blockSize); Chris@12: void reset(); Chris@12: FeatureSet process(const float *const *, RealTime); Chris@12: FeatureSet getRemainingFeatures(); Chris@12: Chris@12: private: Chris@12: void calculate(); Chris@12: FeatureSet assembleFeatures(); Chris@12: Chris@12: float lag2tempo(int); Chris@12: int tempo2lag(float); Chris@12: Chris@12: float m_inputSampleRate; Chris@12: size_t m_stepSize; Chris@12: size_t m_blockSize; Chris@12: Chris@12: float m_minbpm; Chris@12: float m_maxbpm; Chris@12: float m_maxdflen; Chris@12: Chris@12: float *m_priorMagnitudes; Chris@12: Chris@12: size_t m_dfsize; Chris@12: float *m_df; Chris@12: float *m_r; Chris@12: float *m_fr; Chris@12: float *m_t; Chris@12: size_t m_n; Chris@12: Chris@12: Vamp::RealTime m_start; Chris@12: Vamp::RealTime m_lasttime; Chris@12: }; Chris@12: Chris@12: FixedTempoEstimator::D::D(float inputSampleRate) : Chris@12: m_inputSampleRate(inputSampleRate), Chris@12: m_stepSize(0), Chris@12: m_blockSize(0), Chris@12: m_minbpm(50), Chris@12: m_maxbpm(190), Chris@12: m_maxdflen(10), Chris@12: m_priorMagnitudes(0), Chris@12: m_df(0), Chris@12: m_r(0), Chris@12: m_fr(0), Chris@12: m_t(0), Chris@12: m_n(0) Chris@12: { Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::D::~D() Chris@12: { Chris@12: delete[] m_priorMagnitudes; Chris@12: delete[] m_df; Chris@12: delete[] m_r; Chris@12: delete[] m_fr; Chris@12: delete[] m_t; Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::ParameterList Chris@12: FixedTempoEstimator::D::getParameterDescriptors() const Chris@12: { Chris@12: ParameterList list; Chris@12: Chris@12: ParameterDescriptor d; Chris@12: d.identifier = "minbpm"; Chris@12: d.name = "Minimum estimated tempo"; Chris@12: d.description = "Minimum beat-per-minute value which the tempo estimator is able to return"; Chris@12: d.unit = "bpm"; Chris@12: d.minValue = 10; Chris@12: d.maxValue = 360; Chris@12: d.defaultValue = 50; Chris@12: d.isQuantized = false; Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "maxbpm"; Chris@12: d.name = "Maximum estimated tempo"; Chris@12: d.description = "Maximum beat-per-minute value which the tempo estimator is able to return"; Chris@12: d.defaultValue = 190; Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "maxdflen"; Chris@12: d.name = "Input duration to study"; Chris@12: d.description = "Length of audio input, in seconds, which should be taken into account when estimating tempo. There is no need to supply the plugin with any further input once this time has elapsed since the start of the audio. The tempo estimator may use only the first part of this, up to eight times the slowest beat duration: increasing this value further than that is unlikely to improve results."; Chris@12: d.unit = "s"; Chris@12: d.minValue = 2; Chris@12: d.maxValue = 40; Chris@12: d.defaultValue = 10; Chris@12: list.push_back(d); Chris@12: Chris@12: return list; Chris@12: } Chris@12: Chris@12: float Chris@12: FixedTempoEstimator::D::getParameter(string id) const Chris@12: { Chris@12: if (id == "minbpm") { Chris@12: return m_minbpm; Chris@12: } else if (id == "maxbpm") { Chris@12: return m_maxbpm; Chris@12: } else if (id == "maxdflen") { Chris@12: return m_maxdflen; Chris@12: } Chris@12: return 0.f; Chris@12: } Chris@12: Chris@12: void Chris@12: FixedTempoEstimator::D::setParameter(string id, float value) Chris@12: { Chris@12: if (id == "minbpm") { Chris@12: m_minbpm = value; Chris@12: } else if (id == "maxbpm") { Chris@12: m_maxbpm = value; Chris@12: } else if (id == "maxdflen") { Chris@12: m_maxdflen = value; Chris@12: } Chris@12: } Chris@12: Chris@12: static int TempoOutput = 0; Chris@12: static int CandidatesOutput = 1; Chris@12: static int DFOutput = 2; Chris@12: static int ACFOutput = 3; Chris@12: static int FilteredACFOutput = 4; Chris@12: Chris@12: FixedTempoEstimator::OutputList Chris@12: FixedTempoEstimator::D::getOutputDescriptors() const Chris@12: { Chris@12: OutputList list; Chris@12: Chris@12: OutputDescriptor d; Chris@12: d.identifier = "tempo"; Chris@12: d.name = "Tempo"; Chris@12: d.description = "Estimated tempo"; Chris@12: d.unit = "bpm"; Chris@12: d.hasFixedBinCount = true; Chris@12: d.binCount = 1; Chris@12: d.hasKnownExtents = false; Chris@12: d.isQuantized = false; Chris@12: d.sampleType = OutputDescriptor::VariableSampleRate; Chris@12: d.sampleRate = m_inputSampleRate; Chris@12: d.hasDuration = true; // our returned tempo spans a certain range Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "candidates"; Chris@12: d.name = "Tempo candidates"; Chris@12: d.description = "Possible tempo estimates, one per bin with the most likely in the first bin"; Chris@12: d.unit = "bpm"; Chris@12: d.hasFixedBinCount = false; Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "detectionfunction"; Chris@12: d.name = "Detection Function"; Chris@12: d.description = "Onset detection function"; Chris@12: d.unit = ""; Chris@12: d.hasFixedBinCount = 1; Chris@12: d.binCount = 1; Chris@12: d.hasKnownExtents = true; Chris@12: d.minValue = 0.0; Chris@12: d.maxValue = 1.0; Chris@12: d.isQuantized = false; Chris@12: d.quantizeStep = 0.0; Chris@12: d.sampleType = OutputDescriptor::FixedSampleRate; Chris@12: if (m_stepSize) { Chris@12: d.sampleRate = m_inputSampleRate / m_stepSize; Chris@12: } else { Chris@12: d.sampleRate = m_inputSampleRate / (getPreferredBlockSize()/2); Chris@12: } Chris@12: d.hasDuration = false; Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "acf"; Chris@12: d.name = "Autocorrelation Function"; Chris@12: d.description = "Autocorrelation of onset detection function"; Chris@12: d.hasKnownExtents = false; Chris@12: d.unit = "r"; Chris@12: list.push_back(d); Chris@12: Chris@12: d.identifier = "filtered_acf"; Chris@12: d.name = "Filtered Autocorrelation"; Chris@12: d.description = "Filtered autocorrelation of onset detection function"; Chris@12: d.unit = "r"; Chris@12: list.push_back(d); Chris@12: Chris@12: return list; Chris@12: } Chris@12: Chris@12: bool Chris@12: FixedTempoEstimator::D::initialise(size_t, size_t stepSize, size_t blockSize) Chris@12: { Chris@12: m_stepSize = stepSize; Chris@12: m_blockSize = blockSize; Chris@12: Chris@12: float dfLengthSecs = m_maxdflen; Chris@12: m_dfsize = (dfLengthSecs * m_inputSampleRate) / m_stepSize; Chris@12: Chris@12: m_priorMagnitudes = new float[m_blockSize/2]; Chris@12: m_df = new float[m_dfsize]; Chris@12: Chris@12: for (size_t i = 0; i < m_blockSize/2; ++i) { Chris@12: m_priorMagnitudes[i] = 0.f; Chris@12: } Chris@12: for (size_t i = 0; i < m_dfsize; ++i) { Chris@12: m_df[i] = 0.f; Chris@12: } Chris@12: Chris@12: m_n = 0; Chris@12: Chris@12: return true; Chris@12: } Chris@12: Chris@12: void Chris@12: FixedTempoEstimator::D::reset() Chris@12: { Chris@12: if (!m_priorMagnitudes) return; Chris@12: Chris@12: for (size_t i = 0; i < m_blockSize/2; ++i) { Chris@12: m_priorMagnitudes[i] = 0.f; Chris@12: } Chris@12: for (size_t i = 0; i < m_dfsize; ++i) { Chris@12: m_df[i] = 0.f; Chris@12: } Chris@12: Chris@12: delete[] m_r; Chris@12: m_r = 0; Chris@12: Chris@12: delete[] m_fr; Chris@12: m_fr = 0; Chris@12: Chris@12: delete[] m_t; Chris@12: m_t = 0; Chris@12: Chris@12: m_n = 0; Chris@12: Chris@12: m_start = RealTime::zeroTime; Chris@12: m_lasttime = RealTime::zeroTime; Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::FeatureSet Chris@12: FixedTempoEstimator::D::process(const float *const *inputBuffers, RealTime ts) Chris@12: { Chris@12: FeatureSet fs; Chris@12: Chris@12: if (m_stepSize == 0) { Chris@12: cerr << "ERROR: FixedTempoEstimator::process: " Chris@12: << "FixedTempoEstimator has not been initialised" Chris@12: << endl; Chris@12: return fs; Chris@12: } Chris@12: Chris@12: if (m_n == 0) m_start = ts; Chris@12: m_lasttime = ts; Chris@12: Chris@12: if (m_n == m_dfsize) { Chris@12: // If we have seen enough input, do the estimation and return Chris@12: calculate(); Chris@12: fs = assembleFeatures(); Chris@12: ++m_n; Chris@12: return fs; Chris@12: } Chris@12: Chris@12: // If we have seen more than enough, just discard and return! Chris@12: if (m_n > m_dfsize) return FeatureSet(); Chris@12: Chris@12: float value = 0.f; Chris@12: Chris@12: // m_df will contain an onset detection function based on the rise Chris@12: // in overall power from one spectral frame to the next -- Chris@12: // simplistic but reasonably effective for our purposes. Chris@12: Chris@12: for (size_t i = 1; i < m_blockSize/2; ++i) { Chris@12: Chris@12: float real = inputBuffers[0][i*2]; Chris@12: float imag = inputBuffers[0][i*2 + 1]; Chris@12: Chris@12: float sqrmag = real * real + imag * imag; Chris@12: value += fabsf(sqrmag - m_priorMagnitudes[i]); Chris@12: Chris@12: m_priorMagnitudes[i] = sqrmag; Chris@12: } Chris@12: Chris@12: m_df[m_n] = value; Chris@12: Chris@12: ++m_n; Chris@12: return fs; Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::FeatureSet Chris@12: FixedTempoEstimator::D::getRemainingFeatures() Chris@12: { Chris@12: FeatureSet fs; Chris@12: if (m_n > m_dfsize) return fs; Chris@12: calculate(); Chris@12: fs = assembleFeatures(); Chris@12: ++m_n; Chris@12: return fs; Chris@12: } Chris@12: Chris@12: float Chris@12: FixedTempoEstimator::D::lag2tempo(int lag) Chris@12: { Chris@12: return 60.f / ((lag * m_stepSize) / m_inputSampleRate); Chris@12: } Chris@12: Chris@12: int Chris@12: FixedTempoEstimator::D::tempo2lag(float tempo) Chris@12: { Chris@12: return ((60.f / tempo) * m_inputSampleRate) / m_stepSize; Chris@12: } Chris@12: Chris@12: void Chris@12: FixedTempoEstimator::D::calculate() Chris@12: { Chris@12: if (m_r) { Chris@12: cerr << "FixedTempoEstimator::calculate: calculation already happened?" << endl; Chris@12: return; Chris@12: } Chris@12: Chris@12: if (m_n < m_dfsize / 9 && Chris@12: m_n < (1.0 * m_inputSampleRate) / m_stepSize) { // 1 second Chris@12: cerr << "FixedTempoEstimator::calculate: Input is too short" << endl; Chris@12: return; Chris@12: } Chris@12: Chris@12: // This function takes m_df (the detection function array filled Chris@12: // out in process()) and calculates m_r (the raw autocorrelation) Chris@12: // and m_fr (the filtered autocorrelation from whose peaks tempo Chris@12: // estimates will be taken). Chris@12: Chris@12: int n = m_n; // length of actual df array (m_dfsize is the theoretical max) Chris@12: Chris@12: m_r = new float[n/2]; // raw autocorrelation Chris@12: m_fr = new float[n/2]; // filtered autocorrelation Chris@12: m_t = new float[n/2]; // averaged tempo estimate for each lag value Chris@12: Chris@12: for (int i = 0; i < n/2; ++i) { Chris@12: m_r[i] = 0.f; Chris@12: m_fr[i] = 0.f; Chris@12: m_t[i] = lag2tempo(i); Chris@12: } Chris@12: Chris@12: // Calculate the raw autocorrelation of the detection function Chris@12: Chris@12: for (int i = 0; i < n/2; ++i) { Chris@12: Chris@12: for (int j = i; j < n; ++j) { Chris@12: m_r[i] += m_df[j] * m_df[j - i]; Chris@12: } Chris@12: Chris@12: m_r[i] /= n - i - 1; Chris@12: } Chris@12: Chris@12: // Filter the autocorrelation and average out the tempo estimates Chris@12: Chris@12: float related[] = { 0.5, 2, 4, 8 }; Chris@12: Chris@12: for (int i = 1; i < n/2-1; ++i) { Chris@12: Chris@12: m_fr[i] = m_r[i]; Chris@12: Chris@12: int div = 1; Chris@12: Chris@12: for (int j = 0; j < int(sizeof(related)/sizeof(related[0])); ++j) { Chris@12: Chris@12: // Check for an obvious peak at each metrically related lag Chris@12: Chris@12: int k0 = int(i * related[j] + 0.5); Chris@12: Chris@12: if (k0 >= 0 && k0 < int(n/2)) { Chris@12: Chris@12: int kmax = 0, kmin = 0; Chris@12: float kvmax = 0, kvmin = 0; Chris@12: bool have = false; Chris@12: Chris@12: for (int k = k0 - 1; k <= k0 + 1; ++k) { Chris@12: Chris@12: if (k < 0 || k >= n/2) continue; Chris@12: Chris@12: if (!have || (m_r[k] > kvmax)) { kmax = k; kvmax = m_r[k]; } Chris@12: if (!have || (m_r[k] < kvmin)) { kmin = k; kvmin = m_r[k]; } Chris@12: Chris@12: have = true; Chris@12: } Chris@12: Chris@12: // Boost the original lag according to the strongest Chris@12: // value found close to this related lag Chris@12: Chris@12: m_fr[i] += m_r[kmax] / 5; Chris@12: Chris@12: if ((kmax == 0 || m_r[kmax] > m_r[kmax-1]) && Chris@12: (kmax == n/2-1 || m_r[kmax] > m_r[kmax+1]) && Chris@12: kvmax > kvmin * 1.05) { Chris@12: Chris@12: // The strongest value close to the related lag is Chris@12: // also a pretty good looking peak, so use it to Chris@12: // improve our tempo estimate for the original lag Chris@12: Chris@12: m_t[i] = m_t[i] + lag2tempo(kmax) * related[j]; Chris@12: ++div; Chris@12: } Chris@12: } Chris@12: } Chris@12: Chris@12: m_t[i] /= div; Chris@12: Chris@12: // Finally apply a primitive perceptual weighting (to prefer Chris@12: // tempi of around 120-130) Chris@12: Chris@12: float weight = 1.f - fabsf(128.f - lag2tempo(i)) * 0.005; Chris@12: if (weight < 0.f) weight = 0.f; Chris@12: weight = weight * weight * weight; Chris@12: Chris@12: m_fr[i] += m_fr[i] * (weight / 3); Chris@12: } Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::FeatureSet Chris@12: FixedTempoEstimator::D::assembleFeatures() Chris@12: { Chris@12: FeatureSet fs; Chris@12: if (!m_r) return fs; // No autocorrelation: no results Chris@12: Chris@12: Feature feature; Chris@12: feature.hasTimestamp = true; Chris@12: feature.hasDuration = false; Chris@12: feature.label = ""; Chris@12: feature.values.clear(); Chris@12: feature.values.push_back(0.f); Chris@12: Chris@12: char buffer[40]; Chris@12: Chris@12: int n = m_n; Chris@12: Chris@12: for (int i = 0; i < n; ++i) { Chris@12: Chris@12: // Return the detection function in the DF output Chris@12: Chris@12: feature.timestamp = m_start + Chris@12: RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); Chris@12: feature.values[0] = m_df[i]; Chris@12: feature.label = ""; Chris@12: fs[DFOutput].push_back(feature); Chris@12: } Chris@12: Chris@12: for (int i = 1; i < n/2; ++i) { Chris@12: Chris@12: // Return the raw autocorrelation in the ACF output, each Chris@12: // value labelled according to its corresponding tempo Chris@12: Chris@12: feature.timestamp = m_start + Chris@12: RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); Chris@12: feature.values[0] = m_r[i]; Chris@12: sprintf(buffer, "%.1f bpm", lag2tempo(i)); Chris@12: if (i == n/2-1) feature.label = ""; Chris@12: else feature.label = buffer; Chris@12: fs[ACFOutput].push_back(feature); Chris@12: } Chris@12: Chris@12: float t0 = m_minbpm; // our minimum detected tempo Chris@12: float t1 = m_maxbpm; // our maximum detected tempo Chris@12: Chris@12: int p0 = tempo2lag(t1); Chris@12: int p1 = tempo2lag(t0); Chris@12: Chris@12: std::map candidates; Chris@12: Chris@12: for (int i = p0; i <= p1 && i+1 < n/2; ++i) { Chris@12: Chris@12: if (m_fr[i] > m_fr[i-1] && Chris@12: m_fr[i] > m_fr[i+1]) { Chris@12: Chris@12: // This is a peak in the filtered autocorrelation: stick Chris@12: // it into the map from filtered autocorrelation to lag Chris@12: // index -- this sorts our peaks by filtered acf value Chris@12: Chris@12: candidates[m_fr[i]] = i; Chris@12: } Chris@12: Chris@12: // Also return the filtered autocorrelation in its own output Chris@12: Chris@12: feature.timestamp = m_start + Chris@12: RealTime::frame2RealTime(i * m_stepSize, m_inputSampleRate); Chris@12: feature.values[0] = m_fr[i]; Chris@12: sprintf(buffer, "%.1f bpm", lag2tempo(i)); Chris@12: if (i == p1 || i == n/2-2) feature.label = ""; Chris@12: else feature.label = buffer; Chris@12: fs[FilteredACFOutput].push_back(feature); Chris@12: } Chris@12: Chris@12: if (candidates.empty()) { Chris@12: cerr << "No tempo candidates!" << endl; Chris@12: return fs; Chris@12: } Chris@12: Chris@12: feature.hasTimestamp = true; Chris@12: feature.timestamp = m_start; Chris@12: Chris@12: feature.hasDuration = true; Chris@12: feature.duration = m_lasttime - m_start; Chris@12: Chris@12: // The map contains only peaks and is sorted by filtered acf Chris@12: // value, so the final element in it is our "best" tempo guess Chris@12: Chris@12: std::map::const_iterator ci = candidates.end(); Chris@12: --ci; Chris@12: int maxpi = ci->second; Chris@12: Chris@12: if (m_t[maxpi] > 0) { Chris@12: Chris@12: // This lag has an adjusted tempo from the averaging process: Chris@12: // use it Chris@12: Chris@12: feature.values[0] = m_t[maxpi]; Chris@12: Chris@12: } else { Chris@12: Chris@12: // shouldn't happen -- it would imply that this high value was Chris@12: // not a peak! Chris@12: Chris@12: feature.values[0] = lag2tempo(maxpi); Chris@12: cerr << "WARNING: No stored tempo for index " << maxpi << endl; Chris@12: } Chris@12: Chris@12: sprintf(buffer, "%.1f bpm", feature.values[0]); Chris@12: feature.label = buffer; Chris@12: Chris@12: // Return the best tempo in the main output Chris@12: Chris@12: fs[TempoOutput].push_back(feature); Chris@12: Chris@12: // And return the other estimates (up to the arbitrarily chosen Chris@12: // number of 10 of them) in the candidates output Chris@12: Chris@12: feature.values.clear(); Chris@12: feature.label = ""; Chris@12: Chris@12: while (feature.values.size() < 10) { Chris@12: if (m_t[ci->second] > 0) { Chris@12: feature.values.push_back(m_t[ci->second]); Chris@12: } else { Chris@12: feature.values.push_back(lag2tempo(ci->second)); Chris@12: } Chris@12: if (ci == candidates.begin()) break; Chris@12: --ci; Chris@12: } Chris@12: Chris@12: fs[CandidatesOutput].push_back(feature); Chris@12: Chris@12: return fs; Chris@12: } Chris@12: Chris@12: Chris@12: Chris@12: FixedTempoEstimator::FixedTempoEstimator(float inputSampleRate) : Chris@12: Plugin(inputSampleRate), Chris@12: m_d(new D(inputSampleRate)) Chris@12: { Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::~FixedTempoEstimator() Chris@12: { Chris@12: delete m_d; Chris@12: } Chris@12: Chris@12: string Chris@12: FixedTempoEstimator::getIdentifier() const Chris@12: { Chris@12: return "fixedtempo"; Chris@12: } Chris@12: Chris@12: string Chris@12: FixedTempoEstimator::getName() const Chris@12: { Chris@12: return "Simple Fixed Tempo Estimator"; Chris@12: } Chris@12: Chris@12: string Chris@12: FixedTempoEstimator::getDescription() const Chris@12: { Chris@12: return "Study a short section of audio and estimate its tempo, assuming the tempo is constant"; Chris@12: } Chris@12: Chris@12: string Chris@12: FixedTempoEstimator::getMaker() const Chris@12: { Chris@12: return "Vamp SDK Example Plugins"; Chris@12: } Chris@12: Chris@12: int Chris@12: FixedTempoEstimator::getPluginVersion() const Chris@12: { Chris@12: return 1; Chris@12: } Chris@12: Chris@12: string Chris@12: FixedTempoEstimator::getCopyright() const Chris@12: { Chris@12: return "Code copyright 2008 Queen Mary, University of London. Freely redistributable (BSD license)"; Chris@12: } Chris@12: Chris@12: size_t Chris@12: FixedTempoEstimator::getPreferredStepSize() const Chris@12: { Chris@12: return m_d->getPreferredStepSize(); Chris@12: } Chris@12: Chris@12: size_t Chris@12: FixedTempoEstimator::getPreferredBlockSize() const Chris@12: { Chris@12: return m_d->getPreferredBlockSize(); Chris@12: } Chris@12: Chris@12: bool Chris@12: FixedTempoEstimator::initialise(size_t channels, size_t stepSize, size_t blockSize) Chris@12: { Chris@12: if (channels < getMinChannelCount() || Chris@12: channels > getMaxChannelCount()) return false; Chris@12: Chris@12: return m_d->initialise(channels, stepSize, blockSize); Chris@12: } Chris@12: Chris@12: void Chris@12: FixedTempoEstimator::reset() Chris@12: { Chris@12: return m_d->reset(); Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::ParameterList Chris@12: FixedTempoEstimator::getParameterDescriptors() const Chris@12: { Chris@12: return m_d->getParameterDescriptors(); Chris@12: } Chris@12: Chris@12: float Chris@12: FixedTempoEstimator::getParameter(std::string id) const Chris@12: { Chris@12: return m_d->getParameter(id); Chris@12: } Chris@12: Chris@12: void Chris@12: FixedTempoEstimator::setParameter(std::string id, float value) Chris@12: { Chris@12: m_d->setParameter(id, value); Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::OutputList Chris@12: FixedTempoEstimator::getOutputDescriptors() const Chris@12: { Chris@12: return m_d->getOutputDescriptors(); Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::FeatureSet Chris@12: FixedTempoEstimator::process(const float *const *inputBuffers, RealTime ts) Chris@12: { Chris@12: return m_d->process(inputBuffers, ts); Chris@12: } Chris@12: Chris@12: FixedTempoEstimator::FeatureSet Chris@12: FixedTempoEstimator::getRemainingFeatures() Chris@12: { Chris@12: return m_d->getRemainingFeatures(); Chris@12: }