Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: #include "threads.h" Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: plan *cld; Chris@10: plan **cldws; Chris@10: int nthr; Chris@10: INT r; Chris@10: } P; Chris@10: Chris@10: typedef struct { Chris@10: plan **cldws; Chris@10: R *IO; Chris@10: } PD; Chris@10: Chris@10: static void *spawn_apply(spawn_data *d) Chris@10: { Chris@10: PD *ego = (PD *) d->data; Chris@10: Chris@10: plan_hc2hc *cldw = (plan_hc2hc *) (ego->cldws[d->thr_num]); Chris@10: cldw->apply((plan *) cldw, ego->IO); Chris@10: return 0; Chris@10: } Chris@10: Chris@10: static void apply_dit(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld; Chris@10: Chris@10: cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, I, O); Chris@10: Chris@10: { Chris@10: PD d; Chris@10: Chris@10: d.IO = O; Chris@10: d.cldws = ego->cldws; Chris@10: Chris@10: X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); Chris@10: } Chris@10: } Chris@10: Chris@10: static void apply_dif(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld; Chris@10: Chris@10: { Chris@10: PD d; Chris@10: Chris@10: d.IO = I; Chris@10: d.cldws = ego->cldws; Chris@10: Chris@10: X(spawn_loop)(ego->nthr, ego->nthr, spawn_apply, (void*)&d); Chris@10: } Chris@10: Chris@10: cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, I, O); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: int i; Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: for (i = 0; i < ego->nthr; ++i) Chris@10: X(plan_awake)(ego->cldws[i], wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: int i; Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: for (i = 0; i < ego->nthr; ++i) Chris@10: X(plan_destroy_internal)(ego->cldws[i]); Chris@10: X(ifree)(ego->cldws); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: int i; Chris@10: p->print(p, "(rdft-thr-ct-%s-x%d/%D", Chris@10: ego->super.apply == apply_dit ? "dit" : "dif", Chris@10: ego->nthr, ego->r); Chris@10: for (i = 0; i < ego->nthr; ++i) Chris@10: if (i == 0 || (ego->cldws[i] != ego->cldws[i-1] && Chris@10: (i <= 1 || ego->cldws[i] != ego->cldws[i-2]))) Chris@10: p->print(p, "%(%p%)", ego->cldws[i]); Chris@10: p->print(p, "%(%p%))", ego->cld); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const hc2hc_solver *ego = (const hc2hc_solver *) ego_; Chris@10: const problem_rdft *p; Chris@10: P *pln = 0; Chris@10: plan *cld = 0, **cldws = 0; Chris@10: INT n, r, m, v, ivs, ovs, mcount; Chris@10: int i, nthr, plnr_nthr_save; Chris@10: INT block_size; Chris@10: iodim *d; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (plnr->nthr <= 1 || !X(hc2hc_applicable)(ego, p_, plnr)) Chris@10: return (plan *) 0; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: d = p->sz->dims; Chris@10: n = d[0].n; Chris@10: r = X(choose_radix)(ego->r, n); Chris@10: m = n / r; Chris@10: mcount = (m + 2) / 2; Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); Chris@10: Chris@10: block_size = (mcount + plnr->nthr - 1) / plnr->nthr; Chris@10: nthr = (int)((mcount + block_size - 1) / block_size); Chris@10: plnr_nthr_save = plnr->nthr; Chris@10: plnr->nthr = (plnr->nthr + nthr - 1) / nthr; Chris@10: Chris@10: cldws = (plan **) MALLOC(sizeof(plan *) * nthr, PLANS); Chris@10: for (i = 0; i < nthr; ++i) cldws[i] = (plan *) 0; Chris@10: Chris@10: switch (p->kind[0]) { Chris@10: case R2HC: Chris@10: for (i = 0; i < nthr; ++i) { Chris@10: cldws[i] = ego->mkcldw(ego, Chris@10: R2HC, r, m, d[0].os, v, ovs, Chris@10: i*block_size, Chris@10: (i == nthr - 1) ? Chris@10: (mcount - i*block_size) : block_size, Chris@10: p->O, plnr); Chris@10: if (!cldws[i]) goto nada; Chris@10: } Chris@10: Chris@10: plnr->nthr = plnr_nthr_save; Chris@10: Chris@10: cld = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_d)( Chris@10: X(mktensor_1d)(m, r * d[0].is, d[0].os), Chris@10: X(mktensor_2d)(r, d[0].is, m * d[0].os, Chris@10: v, ivs, ovs), Chris@10: p->I, p->O, p->kind) Chris@10: ); Chris@10: if (!cld) goto nada; Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, apply_dit); Chris@10: break; Chris@10: Chris@10: case HC2R: Chris@10: for (i = 0; i < nthr; ++i) { Chris@10: cldws[i] = ego->mkcldw(ego, Chris@10: HC2R, r, m, d[0].is, v, ivs, Chris@10: i*block_size, Chris@10: (i == nthr - 1) ? Chris@10: (mcount - i*block_size) : block_size, Chris@10: p->I, plnr); Chris@10: if (!cldws[i]) goto nada; Chris@10: } Chris@10: Chris@10: plnr->nthr = plnr_nthr_save; Chris@10: Chris@10: cld = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_d)( Chris@10: X(mktensor_1d)(m, d[0].is, r * d[0].os), Chris@10: X(mktensor_2d)(r, m * d[0].is, d[0].os, Chris@10: v, ivs, ovs), Chris@10: p->I, p->O, p->kind) Chris@10: ); Chris@10: if (!cld) goto nada; Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, apply_dif); Chris@10: break; Chris@10: Chris@10: default: Chris@10: A(0); Chris@10: } Chris@10: Chris@10: pln->cld = cld; Chris@10: pln->cldws = cldws; Chris@10: pln->nthr = nthr; Chris@10: pln->r = r; Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: for (i = 0; i < nthr; ++i) { Chris@10: X(ops_add2)(&cldws[i]->ops, &pln->super.super.ops); Chris@10: pln->super.super.could_prune_now_p |= cldws[i]->could_prune_now_p; Chris@10: } Chris@10: X(ops_add2)(&cld->ops, &pln->super.super.ops); Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: if (cldws) { Chris@10: for (i = 0; i < nthr; ++i) Chris@10: X(plan_destroy_internal)(cldws[i]); Chris@10: X(ifree)(cldws); Chris@10: } Chris@10: X(plan_destroy_internal)(cld); Chris@10: return (plan *) 0; Chris@10: } Chris@10: Chris@10: hc2hc_solver *X(mksolver_hc2hc_threads)(size_t size, INT r, Chris@10: hc2hc_mkinferior mkcldw) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt); Chris@10: slv->r = r; Chris@10: slv->mkcldw = mkcldw; Chris@10: return slv; Chris@10: }