Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* Do a RODFT00 problem via an R2HC problem, padded antisymmetrically to Chris@10: twice the size. This is asymptotically a factor of ~2 worse than Chris@10: rodft00e-r2hc.c (the algorithm used in e.g. FFTPACK and Numerical Chris@10: Recipes), but we abandoned the latter after we discovered that it Chris@10: has intrinsic accuracy problems. */ Chris@10: Chris@10: #include "reodft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft super; Chris@10: plan *cld, *cldcpy; Chris@10: INT is; Chris@10: INT n; Chris@10: INT vl; Chris@10: INT ivs, ovs; Chris@10: } P; Chris@10: Chris@10: static void apply(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT is = ego->is; Chris@10: INT i, n = ego->n; Chris@10: INT iv, vl = ego->vl; Chris@10: INT ivs = ego->ivs, ovs = ego->ovs; Chris@10: R *buf; Chris@10: Chris@10: buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); Chris@10: Chris@10: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { Chris@10: buf[0] = K(0.0); Chris@10: for (i = 1; i < n; ++i) { Chris@10: R a = I[(i-1) * is]; Chris@10: buf[i] = -a; Chris@10: buf[2*n - i] = a; Chris@10: } Chris@10: buf[i] = K(0.0); /* i == n, Nyquist */ Chris@10: Chris@10: /* r2hc transform of size 2*n */ Chris@10: { Chris@10: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@10: cld->apply((plan *) cld, buf, buf); Chris@10: } Chris@10: Chris@10: /* copy n-1 real numbers (imag. parts of hc array) from buf to O */ Chris@10: { Chris@10: plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy; Chris@10: cldcpy->apply((plan *) cldcpy, buf+2*n-1, O); Chris@10: } Chris@10: } Chris@10: Chris@10: X(ifree)(buf); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: X(plan_awake)(ego->cldcpy, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldcpy); Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(rodft00e-r2hc-pad-%D%v%(%p%)%(%p%))", Chris@10: ego->n - 1, ego->vl, ego->cld, ego->cldcpy); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: UNUSED(ego_); Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && p->kind[0] == RODFT00 Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p, const planner *plnr) Chris@10: { Chris@10: return (!NO_SLOWP(plnr) && applicable0(ego, p)); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: P *pln; Chris@10: const problem_rdft *p; Chris@10: plan *cld = (plan *) 0, *cldcpy; Chris@10: R *buf = (R *) 0; Chris@10: INT n; Chris@10: INT vl, ivs, ovs; Chris@10: opcnt ops; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr)) Chris@10: goto nada; Chris@10: Chris@10: p = (const problem_rdft *) p_; Chris@10: Chris@10: n = p->sz->dims[0].n + 1; Chris@10: A(n > 0); Chris@10: buf = (R *) MALLOC(sizeof(R) * (2*n), BUFFERS); Chris@10: Chris@10: cld = X(mkplan_d)(plnr,X(mkproblem_rdft_1_d)(X(mktensor_1d)(2*n,1,1), Chris@10: X(mktensor_0d)(), Chris@10: buf, buf, R2HC)); Chris@10: if (!cld) Chris@10: goto nada; Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs); Chris@10: cldcpy = Chris@10: X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_1_d)(X(mktensor_0d)(), Chris@10: X(mktensor_1d)(n-1,-1, Chris@10: p->sz->dims[0].os), Chris@10: buf+2*n-1,TAINT(p->O, ovs), R2HC)); Chris@10: if (!cldcpy) Chris@10: goto nada; Chris@10: Chris@10: X(ifree)(buf); Chris@10: Chris@10: pln = MKPLAN_RDFT(P, &padt, apply); Chris@10: Chris@10: pln->n = n; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->cld = cld; Chris@10: pln->cldcpy = cldcpy; Chris@10: pln->vl = vl; Chris@10: pln->ivs = ivs; Chris@10: pln->ovs = ovs; Chris@10: Chris@10: X(ops_zero)(&ops); Chris@10: ops.other = n-1 + 2*n; /* loads + stores (input -> buf) */ Chris@10: Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl, &cldcpy->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(ifree0)(buf); Chris@10: if (cld) Chris@10: X(plan_destroy_internal)(cld); Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(rodft00e_r2hc_pad_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }