Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: #include "rdft.h" Chris@10: #include Chris@10: Chris@10: static void destroy(problem *ego_) Chris@10: { Chris@10: problem_rdft *ego = (problem_rdft *) ego_; Chris@10: #if !defined(STRUCT_HACK_C99) && !defined(STRUCT_HACK_KR) Chris@10: X(ifree0)(ego->kind); Chris@10: #endif Chris@10: X(tensor_destroy2)(ego->vecsz, ego->sz); Chris@10: X(ifree)(ego_); Chris@10: } Chris@10: Chris@10: static void kind_hash(md5 *m, const rdft_kind *kind, int rnk) Chris@10: { Chris@10: int i; Chris@10: for (i = 0; i < rnk; ++i) Chris@10: X(md5int)(m, kind[i]); Chris@10: } Chris@10: Chris@10: static void hash(const problem *p_, md5 *m) Chris@10: { Chris@10: const problem_rdft *p = (const problem_rdft *) p_; Chris@10: X(md5puts)(m, "rdft"); Chris@10: X(md5int)(m, p->I == p->O); Chris@10: kind_hash(m, p->kind, p->sz->rnk); Chris@10: X(md5int)(m, X(alignment_of)(p->I)); Chris@10: X(md5int)(m, X(alignment_of)(p->O)); Chris@10: X(tensor_md5)(m, p->sz); Chris@10: X(tensor_md5)(m, p->vecsz); Chris@10: } Chris@10: Chris@10: static void recur(const iodim *dims, int rnk, R *I) Chris@10: { Chris@10: if (rnk == RNK_MINFTY) Chris@10: return; Chris@10: else if (rnk == 0) Chris@10: I[0] = K(0.0); Chris@10: else if (rnk > 0) { Chris@10: INT i, n = dims[0].n, is = dims[0].is; Chris@10: Chris@10: if (rnk == 1) { Chris@10: /* this case is redundant but faster */ Chris@10: for (i = 0; i < n; ++i) Chris@10: I[i * is] = K(0.0); Chris@10: } else { Chris@10: for (i = 0; i < n; ++i) Chris@10: recur(dims + 1, rnk - 1, I + i * is); Chris@10: } Chris@10: } Chris@10: } Chris@10: Chris@10: void X(rdft_zerotens)(tensor *sz, R *I) Chris@10: { Chris@10: recur(sz->dims, sz->rnk, I); Chris@10: } Chris@10: Chris@10: #define KSTR_LEN 8 Chris@10: Chris@10: const char *X(rdft_kind_str)(rdft_kind kind) Chris@10: { Chris@10: static const char kstr[][KSTR_LEN] = { Chris@10: "r2hc", "r2hc01", "r2hc10", "r2hc11", Chris@10: "hc2r", "hc2r01", "hc2r10", "hc2r11", Chris@10: "dht", Chris@10: "redft00", "redft01", "redft10", "redft11", Chris@10: "rodft00", "rodft01", "rodft10", "rodft11" Chris@10: }; Chris@10: A(kind >= 0 && kind < sizeof(kstr) / KSTR_LEN); Chris@10: return kstr[kind]; Chris@10: } Chris@10: Chris@10: static void print(const problem *ego_, printer *p) Chris@10: { Chris@10: const problem_rdft *ego = (const problem_rdft *) ego_; Chris@10: int i; Chris@10: p->print(p, "(rdft %d %D %T %T", Chris@10: X(alignment_of)(ego->I), Chris@10: (INT)(ego->O - ego->I), Chris@10: ego->sz, Chris@10: ego->vecsz); Chris@10: for (i = 0; i < ego->sz->rnk; ++i) Chris@10: p->print(p, " %d", (int)ego->kind[i]); Chris@10: p->print(p, ")"); Chris@10: } Chris@10: Chris@10: static void zero(const problem *ego_) Chris@10: { Chris@10: const problem_rdft *ego = (const problem_rdft *) ego_; Chris@10: tensor *sz = X(tensor_append)(ego->vecsz, ego->sz); Chris@10: X(rdft_zerotens)(sz, UNTAINT(ego->I)); Chris@10: X(tensor_destroy)(sz); Chris@10: } Chris@10: Chris@10: static const problem_adt padt = Chris@10: { Chris@10: PROBLEM_RDFT, Chris@10: hash, Chris@10: zero, Chris@10: print, Chris@10: destroy Chris@10: }; Chris@10: Chris@10: /* Dimensions of size 1 that are not REDFT/RODFT are no-ops and can be Chris@10: eliminated. REDFT/RODFT unit dimensions often have factors of 2.0 Chris@10: and suchlike from normalization and phases, although in principle Chris@10: these constant factors from different dimensions could be combined. */ Chris@10: static int nontrivial(const iodim *d, rdft_kind kind) Chris@10: { Chris@10: return (d->n > 1 || kind == R2HC11 || kind == HC2R11 Chris@10: || (REODFT_KINDP(kind) && kind != REDFT01 && kind != RODFT01)); Chris@10: } Chris@10: Chris@10: problem *X(mkproblem_rdft)(const tensor *sz, const tensor *vecsz, Chris@10: R *I, R *O, const rdft_kind *kind) Chris@10: { Chris@10: problem_rdft *ego; Chris@10: int rnk = sz->rnk; Chris@10: int i; Chris@10: Chris@10: A(X(tensor_kosherp)(sz)); Chris@10: A(X(tensor_kosherp)(vecsz)); Chris@10: A(FINITE_RNK(sz->rnk)); Chris@10: Chris@10: if (UNTAINT(I) == UNTAINT(O)) Chris@10: I = O = JOIN_TAINT(I, O); Chris@10: Chris@10: if (I == O && !X(tensor_inplace_locations)(sz, vecsz)) Chris@10: return X(mkproblem_unsolvable)(); Chris@10: Chris@10: for (i = rnk = 0; i < sz->rnk; ++i) { Chris@10: A(sz->dims[i].n > 0); Chris@10: if (nontrivial(sz->dims + i, kind[i])) Chris@10: ++rnk; Chris@10: } Chris@10: Chris@10: #if defined(STRUCT_HACK_KR) Chris@10: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) Chris@10: + sizeof(rdft_kind) Chris@10: * (rnk > 0 ? rnk - 1 : 0), &padt); Chris@10: #elif defined(STRUCT_HACK_C99) Chris@10: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft) Chris@10: + sizeof(rdft_kind) * rnk, &padt); Chris@10: #else Chris@10: ego = (problem_rdft *) X(mkproblem)(sizeof(problem_rdft), &padt); Chris@10: ego->kind = (rdft_kind *) MALLOC(sizeof(rdft_kind) * rnk, PROBLEMS); Chris@10: #endif Chris@10: Chris@10: /* do compression and sorting as in X(tensor_compress), but take Chris@10: transform kind into account (sigh) */ Chris@10: ego->sz = X(mktensor)(rnk); Chris@10: for (i = rnk = 0; i < sz->rnk; ++i) { Chris@10: if (nontrivial(sz->dims + i, kind[i])) { Chris@10: ego->kind[rnk] = kind[i]; Chris@10: ego->sz->dims[rnk++] = sz->dims[i]; Chris@10: } Chris@10: } Chris@10: for (i = 0; i + 1 < rnk; ++i) { Chris@10: int j; Chris@10: for (j = i + 1; j < rnk; ++j) Chris@10: if (X(dimcmp)(ego->sz->dims + i, ego->sz->dims + j) > 0) { Chris@10: iodim dswap; Chris@10: rdft_kind kswap; Chris@10: dswap = ego->sz->dims[i]; Chris@10: ego->sz->dims[i] = ego->sz->dims[j]; Chris@10: ego->sz->dims[j] = dswap; Chris@10: kswap = ego->kind[i]; Chris@10: ego->kind[i] = ego->kind[j]; Chris@10: ego->kind[j] = kswap; Chris@10: } Chris@10: } Chris@10: Chris@10: for (i = 0; i < rnk; ++i) Chris@10: if (ego->sz->dims[i].n == 2 && (ego->kind[i] == REDFT00 Chris@10: || ego->kind[i] == DHT Chris@10: || ego->kind[i] == HC2R)) Chris@10: ego->kind[i] = R2HC; /* size-2 transforms are equivalent */ Chris@10: Chris@10: ego->vecsz = X(tensor_compress_contiguous)(vecsz); Chris@10: ego->I = I; Chris@10: ego->O = O; Chris@10: Chris@10: A(FINITE_RNK(ego->sz->rnk)); Chris@10: Chris@10: return &(ego->super); Chris@10: } Chris@10: Chris@10: /* Same as X(mkproblem_rdft), but also destroy input tensors. */ Chris@10: problem *X(mkproblem_rdft_d)(tensor *sz, tensor *vecsz, Chris@10: R *I, R *O, const rdft_kind *kind) Chris@10: { Chris@10: problem *p = X(mkproblem_rdft)(sz, vecsz, I, O, kind); Chris@10: X(tensor_destroy2)(vecsz, sz); Chris@10: return p; Chris@10: } Chris@10: Chris@10: /* As above, but for rnk <= 1 only and takes a scalar kind parameter */ Chris@10: problem *X(mkproblem_rdft_1)(const tensor *sz, const tensor *vecsz, Chris@10: R *I, R *O, rdft_kind kind) Chris@10: { Chris@10: A(sz->rnk <= 1); Chris@10: return X(mkproblem_rdft)(sz, vecsz, I, O, &kind); Chris@10: } Chris@10: Chris@10: problem *X(mkproblem_rdft_1_d)(tensor *sz, tensor *vecsz, Chris@10: R *I, R *O, rdft_kind kind) Chris@10: { Chris@10: A(sz->rnk <= 1); Chris@10: return X(mkproblem_rdft_d)(sz, vecsz, I, O, &kind); Chris@10: } Chris@10: Chris@10: /* create a zero-dimensional problem */ Chris@10: problem *X(mkproblem_rdft_0_d)(tensor *vecsz, R *I, R *O) Chris@10: { Chris@10: return X(mkproblem_rdft_d)(X(mktensor_0d)(), vecsz, I, O, Chris@10: (const rdft_kind *)0); Chris@10: }