Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: /* direct RDFT2 R2HC/HC2R solver, if we have a codelet */ Chris@10: Chris@10: #include "rdft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: const kr2c_desc *desc; Chris@10: kr2c k; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_rdft2 super; Chris@10: Chris@10: stride rs, cs; Chris@10: INT vl; Chris@10: INT ivs, ovs; Chris@10: kr2c k; Chris@10: const S *slv; Chris@10: INT ilast; Chris@10: } P; Chris@10: Chris@10: static void apply(const plan *ego_, R *r0, R *r1, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: ASSERT_ALIGNED_DOUBLE; Chris@10: ego->k(r0, r1, cr, ci, Chris@10: ego->rs, ego->cs, ego->cs, Chris@10: ego->vl, ego->ivs, ego->ovs); Chris@10: } Chris@10: Chris@10: static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT i, vl = ego->vl, ovs = ego->ovs; Chris@10: ASSERT_ALIGNED_DOUBLE; Chris@10: ego->k(r0, r1, cr, ci, Chris@10: ego->rs, ego->cs, ego->cs, Chris@10: vl, ego->ivs, ovs); Chris@10: for (i = 0; i < vl; ++i, ci += ovs) Chris@10: ci[0] = ci[ego->ilast] = 0; Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(stride_destroy)(ego->rs); Chris@10: X(stride_destroy)(ego->cs); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: const S *s = ego->slv; Chris@10: Chris@10: p->print(p, "(rdft2-%s-direct-%D%v \"%s\")", Chris@10: X(rdft_kind_str)(s->desc->genus->kind), s->desc->n, Chris@10: ego->vl, s->desc->nam); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego_, const problem *p_) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const kr2c_desc *desc = ego->desc; Chris@10: const problem_rdft2 *p = (const problem_rdft2 *) p_; Chris@10: INT vl; Chris@10: INT ivs, ovs; Chris@10: Chris@10: return ( Chris@10: 1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk <= 1 Chris@10: && p->sz->dims[0].n == desc->n Chris@10: && p->kind == desc->genus->kind Chris@10: Chris@10: /* check strides etc */ Chris@10: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) Chris@10: Chris@10: && (0 Chris@10: /* can operate out-of-place */ Chris@10: || p->r0 != p->cr Chris@10: Chris@10: /* Chris@10: * can compute one transform in-place, no matter Chris@10: * what the strides are. Chris@10: */ Chris@10: || p->vecsz->rnk == 0 Chris@10: Chris@10: /* can operate in-place as long as strides are the same */ Chris@10: || X(rdft2_inplace_strides)(p, RNK_MINFTY) Chris@10: ) Chris@10: ); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: P *pln; Chris@10: const problem_rdft2 *p; Chris@10: iodim *d; Chris@10: int r2hc_kindp; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(rdft2_solve), X(null_awake), print, destroy Chris@10: }; Chris@10: Chris@10: UNUSED(plnr); Chris@10: Chris@10: if (!applicable(ego_, p_)) Chris@10: return (plan *)0; Chris@10: Chris@10: p = (const problem_rdft2 *) p_; Chris@10: Chris@10: r2hc_kindp = R2HC_KINDP(p->kind); Chris@10: A(r2hc_kindp || HC2R_KINDP(p->kind)); Chris@10: Chris@10: pln = MKPLAN_RDFT2(P, &padt, p->kind == R2HC ? apply_r2hc : apply); Chris@10: Chris@10: d = p->sz->dims; Chris@10: Chris@10: pln->k = ego->k; Chris@10: Chris@10: pln->rs = X(mkstride)(d->n, r2hc_kindp ? d->is : d->os); Chris@10: pln->cs = X(mkstride)(d->n, r2hc_kindp ? d->os : d->is); Chris@10: Chris@10: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); Chris@10: Chris@10: /* Nyquist freq., if any */ Chris@10: pln->ilast = (d->n % 2) ? 0 : (d->n/2) * d->os; Chris@10: Chris@10: pln->slv = ego; Chris@10: X(ops_zero)(&pln->super.super.ops); Chris@10: X(ops_madd2)(pln->vl / ego->desc->genus->vl, Chris@10: &ego->desc->ops, Chris@10: &pln->super.super.ops); Chris@10: if (p->kind == R2HC) Chris@10: pln->super.super.ops.other += 2 * pln->vl; /* + 2 stores */ Chris@10: Chris@10: pln->super.super.could_prune_now_p = 1; Chris@10: return &(pln->super.super); Chris@10: } Chris@10: Chris@10: /* constructor */ Chris@10: solver *X(mksolver_rdft2_direct)(kr2c k, const kr2c_desc *desc) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->k = k; Chris@10: slv->desc = desc; Chris@10: return &(slv->super); Chris@10: }