Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: /* Complex RDFTs of rank >= 2, for the case where we are distributed Chris@10: across the first dimension only, and the output is transposed both Chris@10: in data distribution and in ordering (for the first 2 dimensions). Chris@10: Chris@10: (Note that we don't have to handle the case where the input is Chris@10: transposed, since this is equivalent to transposed output with the Chris@10: first two dimensions swapped, and is automatically canonicalized as Chris@10: such by rdft-problem.c. */ Chris@10: Chris@10: #include "mpi-rdft.h" Chris@10: #include "mpi-transpose.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: int preserve_input; /* preserve input even if DESTROY_INPUT was passed */ Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_mpi_rdft super; Chris@10: Chris@10: plan *cld1, *cldt, *cld2; Chris@10: INT roff, ioff; Chris@10: int preserve_input; Chris@10: } P; Chris@10: Chris@10: static void apply(const plan *ego_, R *I, R *O) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: plan_rdft *cld1, *cld2, *cldt; Chris@10: Chris@10: /* RDFT local dimensions */ Chris@10: cld1 = (plan_rdft *) ego->cld1; Chris@10: if (ego->preserve_input) { Chris@10: cld1->apply(ego->cld1, I, O); Chris@10: I = O; Chris@10: } Chris@10: else Chris@10: cld1->apply(ego->cld1, I, I); Chris@10: Chris@10: /* global transpose */ Chris@10: cldt = (plan_rdft *) ego->cldt; Chris@10: cldt->apply(ego->cldt, I, O); Chris@10: Chris@10: /* RDFT final local dimension */ Chris@10: cld2 = (plan_rdft *) ego->cld2; Chris@10: cld2->apply(ego->cld2, O, O); Chris@10: } Chris@10: Chris@10: static int applicable(const S *ego, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: const problem_mpi_rdft *p = (const problem_mpi_rdft *) p_; Chris@10: return (1 Chris@10: && p->sz->rnk > 1 Chris@10: && p->flags == TRANSPOSED_OUT Chris@10: && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr) Chris@10: && p->I != p->O)) Chris@10: && XM(is_local_after)(1, p->sz, IB) Chris@10: && XM(is_local_after)(2, p->sz, OB) Chris@10: && XM(num_blocks)(p->sz->dims[0].n, p->sz->dims[0].b[OB]) == 1 Chris@10: && (!NO_SLOWP(plnr) /* slow if rdft-serial is applicable */ Chris@10: || !XM(rdft_serial_applicable)(p)) Chris@10: ); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cld1, wakefulness); Chris@10: X(plan_awake)(ego->cldt, wakefulness); Chris@10: X(plan_awake)(ego->cld2, wakefulness); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld2); Chris@10: X(plan_destroy_internal)(ego->cldt); Chris@10: X(plan_destroy_internal)(ego->cld1); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: p->print(p, "(mpi-rdft-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", Chris@10: ego->preserve_input==2 ?"/p":"", Chris@10: ego->cld1, ego->cldt, ego->cld2); Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const problem_mpi_rdft *p; Chris@10: P *pln; Chris@10: plan *cld1 = 0, *cldt = 0, *cld2 = 0; Chris@10: R *I, *O, *I2; Chris@10: tensor *sz; Chris@10: int i, my_pe, n_pes; Chris@10: INT nrest; Chris@10: static const plan_adt padt = { Chris@10: XM(rdft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: UNUSED(ego); Chris@10: Chris@10: if (!applicable(ego, p_, plnr)) Chris@10: return (plan *) 0; Chris@10: Chris@10: p = (const problem_mpi_rdft *) p_; Chris@10: Chris@10: I2 = I = p->I; Chris@10: O = p->O; Chris@10: if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) Chris@10: I = O; Chris@10: MPI_Comm_rank(p->comm, &my_pe); Chris@10: MPI_Comm_size(p->comm, &n_pes); Chris@10: Chris@10: sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */ Chris@10: i = p->sz->rnk - 2; A(i >= 0); Chris@10: sz->dims[i].n = p->sz->dims[i+1].n; Chris@10: sz->dims[i].is = sz->dims[i].os = p->vn; Chris@10: for (--i; i >= 0; --i) { Chris@10: sz->dims[i].n = p->sz->dims[i+1].n; Chris@10: sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is; Chris@10: } Chris@10: nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n; Chris@10: { Chris@10: INT is = sz->dims[0].n * sz->dims[0].is; Chris@10: INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[IB], my_pe); Chris@10: cld1 = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_d)(sz, Chris@10: X(mktensor_2d)(b, is, is, Chris@10: p->vn, 1, 1), Chris@10: I2, I, p->kind + 1)); Chris@10: if (XM(any_true)(!cld1, p->comm)) goto nada; Chris@10: } Chris@10: Chris@10: nrest *= p->vn; Chris@10: cldt = X(mkplan_d)(plnr, Chris@10: XM(mkproblem_transpose)( Chris@10: p->sz->dims[0].n, p->sz->dims[1].n, nrest, Chris@10: I, O, Chris@10: p->sz->dims[0].b[IB], p->sz->dims[1].b[OB], Chris@10: p->comm, 0)); Chris@10: if (XM(any_true)(!cldt, p->comm)) goto nada; Chris@10: Chris@10: { Chris@10: INT is = p->sz->dims[0].n * nrest; Chris@10: INT b = XM(block)(p->sz->dims[1].n, p->sz->dims[1].b[OB], my_pe); Chris@10: cld2 = X(mkplan_d)(plnr, Chris@10: X(mkproblem_rdft_1_d)(X(mktensor_1d)( Chris@10: p->sz->dims[0].n, Chris@10: nrest, nrest), Chris@10: X(mktensor_2d)(b, is, is, Chris@10: nrest, 1, 1), Chris@10: O, O, p->kind[0])); Chris@10: if (XM(any_true)(!cld2, p->comm)) goto nada; Chris@10: } Chris@10: Chris@10: pln = MKPLAN_MPI_RDFT(P, &padt, apply); Chris@10: pln->cld1 = cld1; Chris@10: pln->cldt = cldt; Chris@10: pln->cld2 = cld2; Chris@10: pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr); Chris@10: Chris@10: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); Chris@10: X(ops_add2)(&cldt->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cld2); Chris@10: X(plan_destroy_internal)(cldt); Chris@10: X(plan_destroy_internal)(cld1); Chris@10: return (plan *) 0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(int preserve_input) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_MPI_RDFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->preserve_input = preserve_input; Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void XM(rdft_rank_geq2_transposed_register)(planner *p) Chris@10: { Chris@10: int preserve_input; Chris@10: for (preserve_input = 0; preserve_input <= 1; ++preserve_input) Chris@10: REGISTER_SOLVER(p, mksolver(preserve_input)); Chris@10: }