Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: Chris@10: /* solvers/plans for vectors of small DFT's that cannot be done Chris@10: in-place directly. Use a rank-0 plan to rearrange the data Chris@10: before or after the transform. Can also change an out-of-place Chris@10: plan into a copy + in-place (where the in-place transform Chris@10: is e.g. unit stride). */ Chris@10: Chris@10: /* FIXME: merge with rank-geq2.c(?), since this is just a special case Chris@10: of a rank split where the first/second transform has rank 0. */ Chris@10: Chris@10: #include "dft.h" Chris@10: Chris@10: typedef problem *(*mkcld_t) (const problem_dft *p); Chris@10: Chris@10: typedef struct { Chris@10: dftapply apply; Chris@10: problem *(*mkcld)(const problem_dft *p); Chris@10: const char *nam; Chris@10: } ndrct_adt; Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: const ndrct_adt *adt; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_dft super; Chris@10: plan *cldcpy, *cld; Chris@10: const S *slv; Chris@10: } P; Chris@10: Chris@10: /*-----------------------------------------------------------------------*/ Chris@10: /* first rearrange, then transform */ Chris@10: static void apply_before(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: Chris@10: { Chris@10: plan_dft *cldcpy = (plan_dft *) ego->cldcpy; Chris@10: cldcpy->apply(ego->cldcpy, ri, ii, ro, io); Chris@10: } Chris@10: { Chris@10: plan_dft *cld = (plan_dft *) ego->cld; Chris@10: cld->apply(ego->cld, ro, io, ro, io); Chris@10: } Chris@10: } Chris@10: Chris@10: static problem *mkcld_before(const problem_dft *p) Chris@10: { Chris@10: return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS), Chris@10: X(tensor_copy_inplace)(p->vecsz, INPLACE_OS), Chris@10: p->ro, p->io, p->ro, p->io); Chris@10: } Chris@10: Chris@10: static const ndrct_adt adt_before = Chris@10: { Chris@10: apply_before, mkcld_before, "dft-indirect-before" Chris@10: }; Chris@10: Chris@10: /*-----------------------------------------------------------------------*/ Chris@10: /* first transform, then rearrange */ Chris@10: Chris@10: static void apply_after(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: Chris@10: { Chris@10: plan_dft *cld = (plan_dft *) ego->cld; Chris@10: cld->apply(ego->cld, ri, ii, ri, ii); Chris@10: } Chris@10: { Chris@10: plan_dft *cldcpy = (plan_dft *) ego->cldcpy; Chris@10: cldcpy->apply(ego->cldcpy, ri, ii, ro, io); Chris@10: } Chris@10: } Chris@10: Chris@10: static problem *mkcld_after(const problem_dft *p) Chris@10: { Chris@10: return X(mkproblem_dft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS), Chris@10: X(tensor_copy_inplace)(p->vecsz, INPLACE_IS), Chris@10: p->ri, p->ii, p->ri, p->ii); Chris@10: } Chris@10: Chris@10: static const ndrct_adt adt_after = Chris@10: { Chris@10: apply_after, mkcld_after, "dft-indirect-after" Chris@10: }; Chris@10: Chris@10: /*-----------------------------------------------------------------------*/ Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cld); Chris@10: X(plan_destroy_internal)(ego->cldcpy); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_awake)(ego->cldcpy, wakefulness); Chris@10: X(plan_awake)(ego->cld, wakefulness); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: const S *s = ego->slv; Chris@10: p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy); Chris@10: } Chris@10: Chris@10: static int applicable0(const solver *ego_, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: const S *ego = (const S *) ego_; Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: return (1 Chris@10: && FINITE_RNK(p->vecsz->rnk) Chris@10: Chris@10: /* problem must be a nontrivial transform, not just a copy */ Chris@10: && p->sz->rnk > 0 Chris@10: Chris@10: && (0 Chris@10: Chris@10: /* problem must be in-place & require some Chris@10: rearrangement of the data; to prevent Chris@10: infinite loops with indirect-transpose, we Chris@10: further require that at least some transform Chris@10: strides must decrease */ Chris@10: || (p->ri == p->ro Chris@10: && !X(tensor_inplace_strides2)(p->sz, p->vecsz) Chris@10: && X(tensor_strides_decrease)( Chris@10: p->sz, p->vecsz, Chris@10: ego->adt->apply == apply_after ? Chris@10: INPLACE_IS : INPLACE_OS)) Chris@10: Chris@10: /* or problem must be out of place, transforming Chris@10: from stride 1/2 to bigger stride, for apply_after */ Chris@10: || (p->ri != p->ro && ego->adt->apply == apply_after Chris@10: && !NO_DESTROY_INPUTP(plnr) Chris@10: && X(tensor_min_istride)(p->sz) <= 2 Chris@10: && X(tensor_min_ostride)(p->sz) > 2) Chris@10: Chris@10: /* or problem must be out of place, transforming Chris@10: to stride 1/2 from bigger stride, for apply_before */ Chris@10: || (p->ri != p->ro && ego->adt->apply == apply_before Chris@10: && X(tensor_min_ostride)(p->sz) <= 2 Chris@10: && X(tensor_min_istride)(p->sz) > 2) Chris@10: ) Chris@10: ); Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego_, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: if (!applicable0(ego_, p_, plnr)) return 0; Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0; Chris@10: } Chris@10: return 1; Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: const S *ego = (const S *) ego_; Chris@10: P *pln; Chris@10: plan *cld = 0, *cldcpy = 0; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(dft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego_, p_, plnr)) Chris@10: return (plan *) 0; Chris@10: Chris@10: cldcpy = Chris@10: X(mkplan_d)(plnr, Chris@10: X(mkproblem_dft_d)(X(mktensor_0d)(), Chris@10: X(tensor_append)(p->vecsz, p->sz), Chris@10: p->ri, p->ii, p->ro, p->io)); Chris@10: Chris@10: if (!cldcpy) goto nada; Chris@10: Chris@10: cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0); Chris@10: if (!cld) goto nada; Chris@10: Chris@10: pln = MKPLAN_DFT(P, &padt, ego->adt->apply); Chris@10: pln->cld = cld; Chris@10: pln->cldcpy = cldcpy; Chris@10: pln->slv = ego; Chris@10: X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(plan_destroy_internal)(cld); Chris@10: X(plan_destroy_internal)(cldcpy); Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: static solver *mksolver(const ndrct_adt *adt) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: slv->adt = adt; Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(dft_indirect_register)(planner *p) Chris@10: { Chris@10: unsigned i; Chris@10: static const ndrct_adt *const adts[] = { Chris@10: &adt_before, &adt_after Chris@10: }; Chris@10: Chris@10: for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i) Chris@10: REGISTER_SOLVER(p, mksolver(adts[i])); Chris@10: }