Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: #include "dft.h" Chris@10: Chris@10: typedef struct { Chris@10: solver super; Chris@10: } S; Chris@10: Chris@10: typedef struct { Chris@10: plan_dft super; Chris@10: INT n; /* problem size */ Chris@10: INT nb; /* size of convolution */ Chris@10: R *w; /* lambda k . exp(2*pi*i*k^2/(2*n)) */ Chris@10: R *W; /* DFT(w) */ Chris@10: plan *cldf; Chris@10: INT is, os; Chris@10: } P; Chris@10: Chris@10: static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w) Chris@10: { Chris@10: INT k, ksq, n2 = 2 * n; Chris@10: triggen *t = X(mktriggen)(wakefulness, n2); Chris@10: Chris@10: ksq = 0; Chris@10: for (k = 0; k < n; ++k) { Chris@10: t->cexp(t, ksq, w+2*k); Chris@10: /* careful with overflow */ Chris@10: ksq += 2*k + 1; while (ksq > n2) ksq -= n2; Chris@10: } Chris@10: Chris@10: X(triggen_destroy)(t); Chris@10: } Chris@10: Chris@10: static void mktwiddle(enum wakefulness wakefulness, P *p) Chris@10: { Chris@10: INT i; Chris@10: INT n = p->n, nb = p->nb; Chris@10: R *w, *W; Chris@10: E nbf = (E)nb; Chris@10: Chris@10: p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES); Chris@10: p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES); Chris@10: Chris@10: bluestein_sequence(wakefulness, n, w); Chris@10: Chris@10: for (i = 0; i < nb; ++i) Chris@10: W[2*i] = W[2*i+1] = K(0.0); Chris@10: Chris@10: W[0] = w[0] / nbf; Chris@10: W[1] = w[1] / nbf; Chris@10: Chris@10: for (i = 1; i < n; ++i) { Chris@10: W[2*i] = W[2*(nb-i)] = w[2*i] / nbf; Chris@10: W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf; Chris@10: } Chris@10: Chris@10: { Chris@10: plan_dft *cldf = (plan_dft *)p->cldf; Chris@10: /* cldf must be awake */ Chris@10: cldf->apply(p->cldf, W, W+1, W, W+1); Chris@10: } Chris@10: } Chris@10: Chris@10: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) Chris@10: { Chris@10: const P *ego = (const P *) ego_; Chris@10: INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os; Chris@10: R *w = ego->w, *W = ego->W; Chris@10: R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); Chris@10: Chris@10: /* multiply input by conjugate bluestein sequence */ Chris@10: for (i = 0; i < n; ++i) { Chris@10: E xr = ri[i*is], xi = ii[i*is]; Chris@10: E wr = w[2*i], wi = w[2*i+1]; Chris@10: b[2*i] = xr * wr + xi * wi; Chris@10: b[2*i+1] = xi * wr - xr * wi; Chris@10: } Chris@10: Chris@10: for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0); Chris@10: Chris@10: /* convolution: FFT */ Chris@10: { Chris@10: plan_dft *cldf = (plan_dft *)ego->cldf; Chris@10: cldf->apply(ego->cldf, b, b+1, b, b+1); Chris@10: } Chris@10: Chris@10: /* convolution: pointwise multiplication */ Chris@10: for (i = 0; i < nb; ++i) { Chris@10: E xr = b[2*i], xi = b[2*i+1]; Chris@10: E wr = W[2*i], wi = W[2*i+1]; Chris@10: b[2*i] = xi * wr + xr * wi; Chris@10: b[2*i+1] = xr * wr - xi * wi; Chris@10: } Chris@10: Chris@10: /* convolution: IFFT by FFT with real/imag input/output swapped */ Chris@10: { Chris@10: plan_dft *cldf = (plan_dft *)ego->cldf; Chris@10: cldf->apply(ego->cldf, b, b+1, b, b+1); Chris@10: } Chris@10: Chris@10: /* multiply output by conjugate bluestein sequence */ Chris@10: for (i = 0; i < n; ++i) { Chris@10: E xi = b[2*i], xr = b[2*i+1]; Chris@10: E wr = w[2*i], wi = w[2*i+1]; Chris@10: ro[i*os] = xr * wr + xi * wi; Chris@10: io[i*os] = xi * wr - xr * wi; Chris@10: } Chris@10: Chris@10: X(ifree)(b); Chris@10: } Chris@10: Chris@10: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: Chris@10: X(plan_awake)(ego->cldf, wakefulness); Chris@10: Chris@10: switch (wakefulness) { Chris@10: case SLEEPY: Chris@10: X(ifree0)(ego->w); ego->w = 0; Chris@10: X(ifree0)(ego->W); ego->W = 0; Chris@10: break; Chris@10: default: Chris@10: A(!ego->w); Chris@10: mktwiddle(wakefulness, ego); Chris@10: break; Chris@10: } Chris@10: } Chris@10: Chris@10: static int applicable(const solver *ego, const problem *p_, Chris@10: const planner *plnr) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: UNUSED(ego); Chris@10: return (1 Chris@10: && p->sz->rnk == 1 Chris@10: && p->vecsz->rnk == 0 Chris@10: /* FIXME: allow other sizes */ Chris@10: && X(is_prime)(p->sz->dims[0].n) Chris@10: Chris@10: /* FIXME: avoid infinite recursion of bluestein with itself. Chris@10: This works because all factors in child problems are 2, 3, 5 */ Chris@10: && p->sz->dims[0].n > 16 Chris@10: Chris@10: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW) Chris@10: ); Chris@10: } Chris@10: Chris@10: static void destroy(plan *ego_) Chris@10: { Chris@10: P *ego = (P *) ego_; Chris@10: X(plan_destroy_internal)(ego->cldf); Chris@10: } Chris@10: Chris@10: static void print(const plan *ego_, printer *p) Chris@10: { Chris@10: const P *ego = (const P *)ego_; Chris@10: p->print(p, "(dft-bluestein-%D/%D%(%p%))", Chris@10: ego->n, ego->nb, ego->cldf); Chris@10: } Chris@10: Chris@10: static INT choose_transform_size(INT minsz) Chris@10: { Chris@10: while (!X(factors_into_small_primes)(minsz)) Chris@10: ++minsz; Chris@10: return minsz; Chris@10: } Chris@10: Chris@10: static plan *mkplan(const solver *ego, const problem *p_, planner *plnr) Chris@10: { Chris@10: const problem_dft *p = (const problem_dft *) p_; Chris@10: P *pln; Chris@10: INT n, nb; Chris@10: plan *cldf = 0; Chris@10: R *buf = (R *) 0; Chris@10: Chris@10: static const plan_adt padt = { Chris@10: X(dft_solve), awake, print, destroy Chris@10: }; Chris@10: Chris@10: if (!applicable(ego, p_, plnr)) Chris@10: return (plan *) 0; Chris@10: Chris@10: n = p->sz->dims[0].n; Chris@10: nb = choose_transform_size(2 * n - 1); Chris@10: buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS); Chris@10: Chris@10: cldf = X(mkplan_f_d)(plnr, Chris@10: X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2), Chris@10: X(mktensor_1d)(1, 0, 0), Chris@10: buf, buf+1, Chris@10: buf, buf+1), Chris@10: NO_SLOW, 0, 0); Chris@10: if (!cldf) goto nada; Chris@10: Chris@10: X(ifree)(buf); Chris@10: Chris@10: pln = MKPLAN_DFT(P, &padt, apply); Chris@10: Chris@10: pln->n = n; Chris@10: pln->nb = nb; Chris@10: pln->w = 0; Chris@10: pln->W = 0; Chris@10: pln->cldf = cldf; Chris@10: pln->is = p->sz->dims[0].is; Chris@10: pln->os = p->sz->dims[0].os; Chris@10: Chris@10: X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops); Chris@10: pln->super.super.ops.add += 4 * n + 2 * nb; Chris@10: pln->super.super.ops.mul += 8 * n + 4 * nb; Chris@10: pln->super.super.ops.other += 6 * (n + nb); Chris@10: Chris@10: return &(pln->super.super); Chris@10: Chris@10: nada: Chris@10: X(ifree0)(buf); Chris@10: X(plan_destroy_internal)(cldf); Chris@10: return (plan *)0; Chris@10: } Chris@10: Chris@10: Chris@10: static solver *mksolver(void) Chris@10: { Chris@10: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; Chris@10: S *slv = MKSOLVER(S, &sadt); Chris@10: return &(slv->super); Chris@10: } Chris@10: Chris@10: void X(dft_bluestein_register)(planner *p) Chris@10: { Chris@10: REGISTER_SOLVER(p, mksolver()); Chris@10: }