cannam@140: /** @file paex_ocean_shore.c cannam@140: @ingroup examples_src cannam@140: @brief Generate Pink Noise using Gardner method, and make "waves". Provides an example of how to cannam@140: post stuff to/from the audio callback using lock-free FIFOs implemented by the PA ringbuffer. cannam@140: cannam@140: Optimization suggested by James McCartney uses a tree cannam@140: to select which random value to replace. cannam@140:
cannam@140: 	x x x x x x x x x x x x x x x x 
cannam@140: 	x   x   x   x   x   x   x   x   
cannam@140: 	x       x       x       x       
cannam@140: 	 x               x               
cannam@140: 	   x   
cannam@140: 
cannam@140: Tree is generated by counting trailing zeros in an increasing index. cannam@140: When the index is zero, no random number is selected. cannam@140: cannam@140: @author Phil Burk http://www.softsynth.com cannam@140: Robert Bielik cannam@140: */ cannam@140: /* cannam@140: * $Id$ cannam@140: * cannam@140: * This program uses the PortAudio Portable Audio Library. cannam@140: * For more information see: http://www.portaudio.com cannam@140: * Copyright (c) 1999-2000 Ross Bencina and Phil Burk cannam@140: * cannam@140: * Permission is hereby granted, free of charge, to any person obtaining cannam@140: * a copy of this software and associated documentation files cannam@140: * (the "Software"), to deal in the Software without restriction, cannam@140: * including without limitation the rights to use, copy, modify, merge, cannam@140: * publish, distribute, sublicense, and/or sell copies of the Software, cannam@140: * and to permit persons to whom the Software is furnished to do so, cannam@140: * subject to the following conditions: cannam@140: * cannam@140: * The above copyright notice and this permission notice shall be cannam@140: * included in all copies or substantial portions of the Software. cannam@140: * cannam@140: * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, cannam@140: * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF cannam@140: * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. cannam@140: * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR cannam@140: * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF cannam@140: * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION cannam@140: * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. cannam@140: */ cannam@140: cannam@140: /* cannam@140: * The text above constitutes the entire PortAudio license; however, cannam@140: * the PortAudio community also makes the following non-binding requests: cannam@140: * cannam@140: * Any person wishing to distribute modifications to the Software is cannam@140: * requested to send the modifications to the original developer so that cannam@140: * they can be incorporated into the canonical version. It is also cannam@140: * requested that these non-binding requests be included along with the cannam@140: * license above. cannam@140: */ cannam@140: cannam@140: #include cannam@140: #include cannam@140: #include cannam@140: #include cannam@140: #include cannam@140: cannam@140: #include "portaudio.h" cannam@140: #include "pa_ringbuffer.h" cannam@140: #include "pa_util.h" cannam@140: cannam@140: #define PINK_MAX_RANDOM_ROWS (30) cannam@140: #define PINK_RANDOM_BITS (24) cannam@140: #define PINK_RANDOM_SHIFT ((sizeof(long)*8)-PINK_RANDOM_BITS) cannam@140: cannam@140: typedef struct cannam@140: { cannam@140: long pink_Rows[PINK_MAX_RANDOM_ROWS]; cannam@140: long pink_RunningSum; /* Used to optimize summing of generators. */ cannam@140: int pink_Index; /* Incremented each sample. */ cannam@140: int pink_IndexMask; /* Index wrapped by ANDing with this mask. */ cannam@140: float pink_Scalar; /* Used to scale within range of -1.0 to +1.0 */ cannam@140: } cannam@140: PinkNoise; cannam@140: cannam@140: typedef struct cannam@140: { cannam@140: float bq_b0; cannam@140: float bq_b1; cannam@140: float bq_b2; cannam@140: float bq_a1; cannam@140: float bq_a2; cannam@140: } BiQuad; cannam@140: cannam@140: typedef enum cannam@140: { cannam@140: State_kAttack, cannam@140: State_kPreDecay, cannam@140: State_kDecay, cannam@140: State_kCnt, cannam@140: } EnvState; cannam@140: cannam@140: typedef struct cannam@140: { cannam@140: PinkNoise wave_left; cannam@140: PinkNoise wave_right; cannam@140: cannam@140: BiQuad wave_bq_coeffs; cannam@140: float wave_bq_left[2]; cannam@140: float wave_bq_right[2]; cannam@140: cannam@140: EnvState wave_envelope_state; cannam@140: float wave_envelope_level; cannam@140: float wave_envelope_max_level; cannam@140: float wave_pan_left; cannam@140: float wave_pan_right; cannam@140: float wave_attack_incr; cannam@140: float wave_decay_incr; cannam@140: cannam@140: } OceanWave; cannam@140: cannam@140: /* Prototypes */ cannam@140: static unsigned long GenerateRandomNumber( void ); cannam@140: void InitializePinkNoise( PinkNoise *pink, int numRows ); cannam@140: float GeneratePinkNoise( PinkNoise *pink ); cannam@140: unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames); cannam@140: cannam@140: /************************************************************/ cannam@140: /* Calculate pseudo-random 32 bit number based on linear congruential method. */ cannam@140: static unsigned long GenerateRandomNumber( void ) cannam@140: { cannam@140: /* Change this seed for different random sequences. */ cannam@140: static unsigned long randSeed = 22222; cannam@140: randSeed = (randSeed * 196314165) + 907633515; cannam@140: return randSeed; cannam@140: } cannam@140: cannam@140: /************************************************************/ cannam@140: /* Setup PinkNoise structure for N rows of generators. */ cannam@140: void InitializePinkNoise( PinkNoise *pink, int numRows ) cannam@140: { cannam@140: int i; cannam@140: long pmax; cannam@140: pink->pink_Index = 0; cannam@140: pink->pink_IndexMask = (1<pink_Scalar = 1.0f / pmax; cannam@140: /* Initialize rows. */ cannam@140: for( i=0; ipink_Rows[i] = 0; cannam@140: pink->pink_RunningSum = 0; cannam@140: } cannam@140: cannam@140: /* Generate Pink noise values between -1.0 and +1.0 */ cannam@140: float GeneratePinkNoise( PinkNoise *pink ) cannam@140: { cannam@140: long newRandom; cannam@140: long sum; cannam@140: float output; cannam@140: /* Increment and mask index. */ cannam@140: pink->pink_Index = (pink->pink_Index + 1) & pink->pink_IndexMask; cannam@140: /* If index is zero, don't update any random values. */ cannam@140: if( pink->pink_Index != 0 ) cannam@140: { cannam@140: /* Determine how many trailing zeros in PinkIndex. */ cannam@140: /* This algorithm will hang if n==0 so test first. */ cannam@140: int numZeros = 0; cannam@140: int n = pink->pink_Index; cannam@140: while( (n & 1) == 0 ) cannam@140: { cannam@140: n = n >> 1; cannam@140: numZeros++; cannam@140: } cannam@140: /* Replace the indexed ROWS random value. cannam@140: * Subtract and add back to RunningSum instead of adding all the random cannam@140: * values together. Only one changes each time. cannam@140: */ cannam@140: pink->pink_RunningSum -= pink->pink_Rows[numZeros]; cannam@140: newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT; cannam@140: pink->pink_RunningSum += newRandom; cannam@140: pink->pink_Rows[numZeros] = newRandom; cannam@140: } cannam@140: cannam@140: /* Add extra white noise value. */ cannam@140: newRandom = ((long)GenerateRandomNumber()) >> PINK_RANDOM_SHIFT; cannam@140: sum = pink->pink_RunningSum + newRandom; cannam@140: /* Scale to range of -1.0 to 0.9999. */ cannam@140: output = pink->pink_Scalar * sum; cannam@140: return output; cannam@140: } cannam@140: cannam@140: float ProcessBiquad(const BiQuad* coeffs, float* memory, float input) cannam@140: { cannam@140: float w = input - coeffs->bq_a1 * memory[0] - coeffs->bq_a2 * memory[1]; cannam@140: float out = coeffs->bq_b1 * memory[0] + coeffs->bq_b2 * memory[1] + coeffs->bq_b0 * w; cannam@140: memory[1] = memory[0]; cannam@140: memory[0] = w; cannam@140: return out; cannam@140: } cannam@140: cannam@140: static const float one_over_2Q_LP = 0.3f; cannam@140: static const float one_over_2Q_HP = 1.0f; cannam@140: cannam@140: unsigned GenerateWave( OceanWave* wave, float* output, unsigned noOfFrames ) cannam@140: { cannam@140: unsigned retval=0,i; cannam@140: float targetLevel, levelIncr, currentLevel; cannam@140: switch (wave->wave_envelope_state) cannam@140: { cannam@140: case State_kAttack: cannam@140: targetLevel = noOfFrames * wave->wave_attack_incr + wave->wave_envelope_level; cannam@140: if (targetLevel >= wave->wave_envelope_max_level) cannam@140: { cannam@140: /* Go to decay state */ cannam@140: wave->wave_envelope_state = State_kPreDecay; cannam@140: targetLevel = wave->wave_envelope_max_level; cannam@140: } cannam@140: /* Calculate lowpass biquad coeffs cannam@140: cannam@140: alpha = sin(w0)/(2*Q) cannam@140: cannam@140: b0 = (1 - cos(w0))/2 cannam@140: b1 = 1 - cos(w0) cannam@140: b2 = (1 - cos(w0))/2 cannam@140: a0 = 1 + alpha cannam@140: a1 = -2*cos(w0) cannam@140: a2 = 1 - alpha cannam@140: cannam@140: w0 = [0 - pi[ cannam@140: */ cannam@140: { cannam@140: const float w0 = 3.141592654f * targetLevel / wave->wave_envelope_max_level; cannam@140: const float alpha = sinf(w0) * one_over_2Q_LP; cannam@140: const float cosw0 = cosf(w0); cannam@140: const float a0_fact = 1.0f / (1.0f + alpha); cannam@140: wave->wave_bq_coeffs.bq_b1 = (1.0f - cosw0) * a0_fact; cannam@140: wave->wave_bq_coeffs.bq_b0 = wave->wave_bq_coeffs.bq_b1 * 0.5f; cannam@140: wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0; cannam@140: wave->wave_bq_coeffs.bq_a2 = (1.0f - alpha) * a0_fact; cannam@140: wave->wave_bq_coeffs.bq_a1 = -2.0f * cosw0 * a0_fact; cannam@140: } cannam@140: break; cannam@140: cannam@140: case State_kPreDecay: cannam@140: /* Reset biquad state */ cannam@140: memset(wave->wave_bq_left, 0, 2 * sizeof(float)); cannam@140: memset(wave->wave_bq_right, 0, 2 * sizeof(float)); cannam@140: wave->wave_envelope_state = State_kDecay; cannam@140: cannam@140: /* Deliberate fall-through */ cannam@140: cannam@140: case State_kDecay: cannam@140: targetLevel = noOfFrames * wave->wave_decay_incr + wave->wave_envelope_level; cannam@140: if (targetLevel < 0.001f) cannam@140: { cannam@140: /* < -60 dB, we're done */ cannam@140: wave->wave_envelope_state = 3; cannam@140: retval = 1; cannam@140: } cannam@140: /* Calculate highpass biquad coeffs cannam@140: cannam@140: alpha = sin(w0)/(2*Q) cannam@140: cannam@140: b0 = (1 + cos(w0))/2 cannam@140: b1 = -(1 + cos(w0)) cannam@140: b2 = (1 + cos(w0))/2 cannam@140: a0 = 1 + alpha cannam@140: a1 = -2*cos(w0) cannam@140: a2 = 1 - alpha cannam@140: cannam@140: w0 = [0 - pi/2[ cannam@140: */ cannam@140: { cannam@140: const float v = targetLevel / wave->wave_envelope_max_level; cannam@140: const float w0 = 1.5707963f * (1.0f - (v*v)); cannam@140: const float alpha = sinf(w0) * one_over_2Q_HP; cannam@140: const float cosw0 = cosf(w0); cannam@140: const float a0_fact = 1.0f / (1.0f + alpha); cannam@140: wave->wave_bq_coeffs.bq_b1 = (float)(- (1 + cosw0) * a0_fact); cannam@140: wave->wave_bq_coeffs.bq_b0 = -wave->wave_bq_coeffs.bq_b1 * 0.5f; cannam@140: wave->wave_bq_coeffs.bq_b2 = wave->wave_bq_coeffs.bq_b0; cannam@140: wave->wave_bq_coeffs.bq_a2 = (float)((1.0 - alpha) * a0_fact); cannam@140: wave->wave_bq_coeffs.bq_a1 = (float)(-2.0 * cosw0 * a0_fact); cannam@140: } cannam@140: break; cannam@140: cannam@140: default: cannam@140: break; cannam@140: } cannam@140: cannam@140: currentLevel = wave->wave_envelope_level; cannam@140: wave->wave_envelope_level = targetLevel; cannam@140: levelIncr = (targetLevel - currentLevel) / noOfFrames; cannam@140: cannam@140: for (i = 0; i < noOfFrames; ++i, currentLevel += levelIncr) cannam@140: { cannam@140: (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_left, (GeneratePinkNoise(&wave->wave_left))) * currentLevel * wave->wave_pan_left; cannam@140: (*output++) += ProcessBiquad(&wave->wave_bq_coeffs, wave->wave_bq_right, (GeneratePinkNoise(&wave->wave_right))) * currentLevel * wave->wave_pan_right; cannam@140: } cannam@140: cannam@140: return retval; cannam@140: } cannam@140: cannam@140: cannam@140: /*******************************************************************/ cannam@140: cannam@140: /* Context for callback routine. */ cannam@140: typedef struct cannam@140: { cannam@140: OceanWave* waves[16]; /* Maximum 16 waves */ cannam@140: unsigned noOfActiveWaves; cannam@140: cannam@140: /* Ring buffer (FIFO) for "communicating" towards audio callback */ cannam@140: PaUtilRingBuffer rBufToRT; cannam@140: void* rBufToRTData; cannam@140: cannam@140: /* Ring buffer (FIFO) for "communicating" from audio callback */ cannam@140: PaUtilRingBuffer rBufFromRT; cannam@140: void* rBufFromRTData; cannam@140: } cannam@140: paTestData; cannam@140: cannam@140: /* This routine will be called by the PortAudio engine when audio is needed. cannam@140: ** It may called at interrupt level on some machines so don't do anything cannam@140: ** that could mess up the system like calling malloc() or free(). cannam@140: */ cannam@140: static int patestCallback(const void* inputBuffer, cannam@140: void* outputBuffer, cannam@140: unsigned long framesPerBuffer, cannam@140: const PaStreamCallbackTimeInfo* timeInfo, cannam@140: PaStreamCallbackFlags statusFlags, cannam@140: void* userData) cannam@140: { cannam@140: int i; cannam@140: paTestData *data = (paTestData*)userData; cannam@140: float *out = (float*)outputBuffer; cannam@140: (void) inputBuffer; /* Prevent "unused variable" warnings. */ cannam@140: cannam@140: /* Reset output data first */ cannam@140: memset(out, 0, framesPerBuffer * 2 * sizeof(float)); cannam@140: cannam@140: for (i = 0; i < 16; ++i) cannam@140: { cannam@140: /* Consume the input queue */ cannam@140: if (data->waves[i] == 0 && PaUtil_GetRingBufferReadAvailable(&data->rBufToRT)) cannam@140: { cannam@140: OceanWave* ptr = 0; cannam@140: PaUtil_ReadRingBuffer(&data->rBufToRT, &ptr, 1); cannam@140: data->waves[i] = ptr; cannam@140: } cannam@140: cannam@140: if (data->waves[i] != 0) cannam@140: { cannam@140: if (GenerateWave(data->waves[i], out, framesPerBuffer)) cannam@140: { cannam@140: /* If wave is "done", post it back to the main thread for deletion */ cannam@140: PaUtil_WriteRingBuffer(&data->rBufFromRT, &data->waves[i], 1); cannam@140: data->waves[i] = 0; cannam@140: } cannam@140: } cannam@140: } cannam@140: return paContinue; cannam@140: } cannam@140: cannam@140: #define NEW_ROW_SIZE (12 + (8*rand())/RAND_MAX) cannam@140: cannam@140: OceanWave* InitializeWave(double SR, float attackInSeconds, float maxLevel, float positionLeftRight) cannam@140: { cannam@140: OceanWave* wave = NULL; cannam@140: static unsigned lastNoOfRows = 12; cannam@140: unsigned newNoOfRows; cannam@140: cannam@140: wave = (OceanWave*)PaUtil_AllocateMemory(sizeof(OceanWave)); cannam@140: if (wave != NULL) cannam@140: { cannam@140: InitializePinkNoise(&wave->wave_left, lastNoOfRows); cannam@140: while ((newNoOfRows = NEW_ROW_SIZE) == lastNoOfRows); cannam@140: InitializePinkNoise(&wave->wave_right, newNoOfRows); cannam@140: lastNoOfRows = newNoOfRows; cannam@140: cannam@140: wave->wave_envelope_state = State_kAttack; cannam@140: wave->wave_envelope_level = 0.f; cannam@140: wave->wave_envelope_max_level = maxLevel; cannam@140: wave->wave_attack_incr = wave->wave_envelope_max_level / (attackInSeconds * (float)SR); cannam@140: wave->wave_decay_incr = - wave->wave_envelope_max_level / (attackInSeconds * 4 * (float)SR); cannam@140: cannam@140: wave->wave_pan_left = sqrtf(1.0f - positionLeftRight); cannam@140: wave->wave_pan_right = sqrtf(positionLeftRight); cannam@140: } cannam@140: return wave; cannam@140: } cannam@140: cannam@140: static float GenerateFloatRandom(float minValue, float maxValue) cannam@140: { cannam@140: return minValue + ((maxValue - minValue) * rand()) / RAND_MAX; cannam@140: } cannam@140: cannam@140: /*******************************************************************/ cannam@140: int main(void); cannam@140: int main(void) cannam@140: { cannam@140: PaStream* stream; cannam@140: PaError err; cannam@140: paTestData data = {0}; cannam@140: PaStreamParameters outputParameters; cannam@140: double tstamp; cannam@140: double tstart; cannam@140: double tdelta = 0; cannam@140: static const double SR = 44100.0; cannam@140: static const int FPB = 128; /* Frames per buffer: 2.9 ms buffers. */ cannam@140: cannam@140: /* Initialize communication buffers (queues) */ cannam@140: data.rBufToRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256); cannam@140: if (data.rBufToRTData == NULL) cannam@140: { cannam@140: return 1; cannam@140: } cannam@140: PaUtil_InitializeRingBuffer(&data.rBufToRT, sizeof(OceanWave*), 256, data.rBufToRTData); cannam@140: cannam@140: data.rBufFromRTData = PaUtil_AllocateMemory(sizeof(OceanWave*) * 256); cannam@140: if (data.rBufFromRTData == NULL) cannam@140: { cannam@140: return 1; cannam@140: } cannam@140: PaUtil_InitializeRingBuffer(&data.rBufFromRT, sizeof(OceanWave*), 256, data.rBufFromRTData); cannam@140: cannam@140: err = Pa_Initialize(); cannam@140: if( err != paNoError ) goto error; cannam@140: cannam@140: /* Open a stereo PortAudio stream so we can hear the result. */ cannam@140: outputParameters.device = Pa_GetDefaultOutputDevice(); /* Take the default output device. */ cannam@140: if (outputParameters.device == paNoDevice) { cannam@140: fprintf(stderr,"Error: No default output device.\n"); cannam@140: goto error; cannam@140: } cannam@140: outputParameters.channelCount = 2; /* Stereo output, most likely supported. */ cannam@140: outputParameters.hostApiSpecificStreamInfo = NULL; cannam@140: outputParameters.sampleFormat = paFloat32; /* 32 bit floating point output. */ cannam@140: outputParameters.suggestedLatency = Pa_GetDeviceInfo(outputParameters.device)->defaultLowOutputLatency; cannam@140: err = Pa_OpenStream(&stream, cannam@140: NULL, /* No input. */ cannam@140: &outputParameters, cannam@140: SR, /* Sample rate. */ cannam@140: FPB, /* Frames per buffer. */ cannam@140: paDitherOff, /* Clip but don't dither */ cannam@140: patestCallback, cannam@140: &data); cannam@140: if( err != paNoError ) goto error; cannam@140: cannam@140: err = Pa_StartStream( stream ); cannam@140: if( err != paNoError ) goto error; cannam@140: cannam@140: printf("Stereo \"ocean waves\" for one minute...\n"); cannam@140: cannam@140: tstart = PaUtil_GetTime(); cannam@140: tstamp = tstart; cannam@140: srand( (unsigned)time(NULL) ); cannam@140: cannam@140: while( ( err = Pa_IsStreamActive( stream ) ) == 1 ) cannam@140: { cannam@140: const double tcurrent = PaUtil_GetTime(); cannam@140: cannam@140: /* Delete "waves" that the callback is finished with */ cannam@140: while (PaUtil_GetRingBufferReadAvailable(&data.rBufFromRT) > 0) cannam@140: { cannam@140: OceanWave* ptr = 0; cannam@140: PaUtil_ReadRingBuffer(&data.rBufFromRT, &ptr, 1); cannam@140: if (ptr != 0) cannam@140: { cannam@140: printf("Wave is deleted...\n"); cannam@140: PaUtil_FreeMemory(ptr); cannam@140: --data.noOfActiveWaves; cannam@140: } cannam@140: } cannam@140: cannam@140: if (tcurrent - tstart < 60.0) /* Only start new "waves" during one minute */ cannam@140: { cannam@140: if (tcurrent >= tstamp) cannam@140: { cannam@140: double tdelta = GenerateFloatRandom(1.0f, 4.0f); cannam@140: tstamp += tdelta; cannam@140: cannam@140: if (data.noOfActiveWaves<16) cannam@140: { cannam@140: const float attackTime = GenerateFloatRandom(2.0f, 6.0f); cannam@140: const float level = GenerateFloatRandom(0.1f, 1.0f); cannam@140: const float pos = GenerateFloatRandom(0.0f, 1.0f); cannam@140: OceanWave* p = InitializeWave(SR, attackTime, level, pos); cannam@140: if (p != NULL) cannam@140: { cannam@140: /* Post wave to audio callback */ cannam@140: PaUtil_WriteRingBuffer(&data.rBufToRT, &p, 1); cannam@140: ++data.noOfActiveWaves; cannam@140: cannam@140: printf("Starting wave at level = %.2f, attack = %.2lf, pos = %.2lf\n", level, attackTime, pos); cannam@140: } cannam@140: } cannam@140: } cannam@140: } cannam@140: else cannam@140: { cannam@140: if (data.noOfActiveWaves == 0) cannam@140: { cannam@140: printf("All waves finished!\n"); cannam@140: break; cannam@140: } cannam@140: } cannam@140: cannam@140: Pa_Sleep(100); cannam@140: } cannam@140: if( err < 0 ) goto error; cannam@140: cannam@140: err = Pa_CloseStream( stream ); cannam@140: if( err != paNoError ) goto error; cannam@140: cannam@140: if (data.rBufToRTData) cannam@140: { cannam@140: PaUtil_FreeMemory(data.rBufToRTData); cannam@140: } cannam@140: if (data.rBufFromRTData) cannam@140: { cannam@140: PaUtil_FreeMemory(data.rBufFromRTData); cannam@140: } cannam@140: cannam@140: Pa_Sleep(1000); cannam@140: cannam@140: Pa_Terminate(); cannam@140: return 0; cannam@140: cannam@140: error: cannam@140: Pa_Terminate(); cannam@140: fprintf( stderr, "An error occured while using the portaudio stream\n" ); cannam@140: fprintf( stderr, "Error number: %d\n", err ); cannam@140: fprintf( stderr, "Error message: %s\n", Pa_GetErrorText( err ) ); cannam@140: return 0; cannam@140: }