Chris@4: /* adler32.c -- compute the Adler-32 checksum of a data stream Chris@4: * Copyright (C) 1995-2011 Mark Adler Chris@4: * For conditions of distribution and use, see copyright notice in zlib.h Chris@4: */ Chris@4: Chris@4: /* @(#) $Id$ */ Chris@4: Chris@4: #include "zutil.h" Chris@4: Chris@4: #define local static Chris@4: Chris@4: local uLong adler32_combine_ OF((uLong adler1, uLong adler2, z_off64_t len2)); Chris@4: Chris@4: #define BASE 65521 /* largest prime smaller than 65536 */ Chris@4: #define NMAX 5552 Chris@4: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ Chris@4: Chris@4: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} Chris@4: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); Chris@4: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); Chris@4: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); Chris@4: #define DO16(buf) DO8(buf,0); DO8(buf,8); Chris@4: Chris@4: /* use NO_DIVIDE if your processor does not do division in hardware -- Chris@4: try it both ways to see which is faster */ Chris@4: #ifdef NO_DIVIDE Chris@4: /* note that this assumes BASE is 65521, where 65536 % 65521 == 15 Chris@4: (thank you to John Reiser for pointing this out) */ Chris@4: # define CHOP(a) \ Chris@4: do { \ Chris@4: unsigned long tmp = a >> 16; \ Chris@4: a &= 0xffffUL; \ Chris@4: a += (tmp << 4) - tmp; \ Chris@4: } while (0) Chris@4: # define MOD28(a) \ Chris@4: do { \ Chris@4: CHOP(a); \ Chris@4: if (a >= BASE) a -= BASE; \ Chris@4: } while (0) Chris@4: # define MOD(a) \ Chris@4: do { \ Chris@4: CHOP(a); \ Chris@4: MOD28(a); \ Chris@4: } while (0) Chris@4: # define MOD63(a) \ Chris@4: do { /* this assumes a is not negative */ \ Chris@4: z_off64_t tmp = a >> 32; \ Chris@4: a &= 0xffffffffL; \ Chris@4: a += (tmp << 8) - (tmp << 5) + tmp; \ Chris@4: tmp = a >> 16; \ Chris@4: a &= 0xffffL; \ Chris@4: a += (tmp << 4) - tmp; \ Chris@4: tmp = a >> 16; \ Chris@4: a &= 0xffffL; \ Chris@4: a += (tmp << 4) - tmp; \ Chris@4: if (a >= BASE) a -= BASE; \ Chris@4: } while (0) Chris@4: #else Chris@4: # define MOD(a) a %= BASE Chris@4: # define MOD28(a) a %= BASE Chris@4: # define MOD63(a) a %= BASE Chris@4: #endif Chris@4: Chris@4: /* ========================================================================= */ Chris@4: uLong ZEXPORT adler32(adler, buf, len) Chris@4: uLong adler; Chris@4: const Bytef *buf; Chris@4: uInt len; Chris@4: { Chris@4: unsigned long sum2; Chris@4: unsigned n; Chris@4: Chris@4: /* split Adler-32 into component sums */ Chris@4: sum2 = (adler >> 16) & 0xffff; Chris@4: adler &= 0xffff; Chris@4: Chris@4: /* in case user likes doing a byte at a time, keep it fast */ Chris@4: if (len == 1) { Chris@4: adler += buf[0]; Chris@4: if (adler >= BASE) Chris@4: adler -= BASE; Chris@4: sum2 += adler; Chris@4: if (sum2 >= BASE) Chris@4: sum2 -= BASE; Chris@4: return adler | (sum2 << 16); Chris@4: } Chris@4: Chris@4: /* initial Adler-32 value (deferred check for len == 1 speed) */ Chris@4: if (buf == Z_NULL) Chris@4: return 1L; Chris@4: Chris@4: /* in case short lengths are provided, keep it somewhat fast */ Chris@4: if (len < 16) { Chris@4: while (len--) { Chris@4: adler += *buf++; Chris@4: sum2 += adler; Chris@4: } Chris@4: if (adler >= BASE) Chris@4: adler -= BASE; Chris@4: MOD28(sum2); /* only added so many BASE's */ Chris@4: return adler | (sum2 << 16); Chris@4: } Chris@4: Chris@4: /* do length NMAX blocks -- requires just one modulo operation */ Chris@4: while (len >= NMAX) { Chris@4: len -= NMAX; Chris@4: n = NMAX / 16; /* NMAX is divisible by 16 */ Chris@4: do { Chris@4: DO16(buf); /* 16 sums unrolled */ Chris@4: buf += 16; Chris@4: } while (--n); Chris@4: MOD(adler); Chris@4: MOD(sum2); Chris@4: } Chris@4: Chris@4: /* do remaining bytes (less than NMAX, still just one modulo) */ Chris@4: if (len) { /* avoid modulos if none remaining */ Chris@4: while (len >= 16) { Chris@4: len -= 16; Chris@4: DO16(buf); Chris@4: buf += 16; Chris@4: } Chris@4: while (len--) { Chris@4: adler += *buf++; Chris@4: sum2 += adler; Chris@4: } Chris@4: MOD(adler); Chris@4: MOD(sum2); Chris@4: } Chris@4: Chris@4: /* return recombined sums */ Chris@4: return adler | (sum2 << 16); Chris@4: } Chris@4: Chris@4: /* ========================================================================= */ Chris@4: local uLong adler32_combine_(adler1, adler2, len2) Chris@4: uLong adler1; Chris@4: uLong adler2; Chris@4: z_off64_t len2; Chris@4: { Chris@4: unsigned long sum1; Chris@4: unsigned long sum2; Chris@4: unsigned rem; Chris@4: Chris@4: /* for negative len, return invalid adler32 as a clue for debugging */ Chris@4: if (len2 < 0) Chris@4: return 0xffffffffUL; Chris@4: Chris@4: /* the derivation of this formula is left as an exercise for the reader */ Chris@4: MOD63(len2); /* assumes len2 >= 0 */ Chris@4: rem = (unsigned)len2; Chris@4: sum1 = adler1 & 0xffff; Chris@4: sum2 = rem * sum1; Chris@4: MOD(sum2); Chris@4: sum1 += (adler2 & 0xffff) + BASE - 1; Chris@4: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; Chris@4: if (sum1 >= BASE) sum1 -= BASE; Chris@4: if (sum1 >= BASE) sum1 -= BASE; Chris@4: if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); Chris@4: if (sum2 >= BASE) sum2 -= BASE; Chris@4: return sum1 | (sum2 << 16); Chris@4: } Chris@4: Chris@4: /* ========================================================================= */ Chris@4: uLong ZEXPORT adler32_combine(adler1, adler2, len2) Chris@4: uLong adler1; Chris@4: uLong adler2; Chris@4: z_off_t len2; Chris@4: { Chris@4: return adler32_combine_(adler1, adler2, len2); Chris@4: } Chris@4: Chris@4: uLong ZEXPORT adler32_combine64(adler1, adler2, len2) Chris@4: uLong adler1; Chris@4: uLong adler2; Chris@4: z_off64_t len2; Chris@4: { Chris@4: return adler32_combine_(adler1, adler2, len2); Chris@4: }