cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: #include "ifftw-mpi.h" cannam@167: cannam@167: /* r2c and c2r transforms. The sz dtensor, as usual, gives the size cannam@167: of the "logical" complex array. For the last dimension N, however, cannam@167: only N/2+1 complex numbers are stored for the complex data. Moreover, cannam@167: for the real data, the last dimension is *always* padded to a size cannam@167: 2*(N/2+1). (Contrast this with the serial API, where there is only cannam@167: padding for in-place plans.) */ cannam@167: cannam@167: /* problem.c: */ cannam@167: typedef struct { cannam@167: problem super; cannam@167: dtensor *sz; cannam@167: INT vn; /* vector length (vector stride 1) */ cannam@167: R *I, *O; /* contiguous interleaved arrays */ cannam@167: cannam@167: rdft_kind kind; /* assert(kind < DHT) */ cannam@167: unsigned flags; /* TRANSPOSED_IN/OUT meaningful for rnk>1 only cannam@167: SCRAMBLED_IN/OUT meaningful for 1d transforms only */ cannam@167: cannam@167: MPI_Comm comm; cannam@167: } problem_mpi_rdft2; cannam@167: cannam@167: problem *XM(mkproblem_rdft2)(const dtensor *sz, INT vn, cannam@167: R *I, R *O, MPI_Comm comm, cannam@167: rdft_kind kind, unsigned flags); cannam@167: problem *XM(mkproblem_rdft2_d)(dtensor *sz, INT vn, cannam@167: R *I, R *O, MPI_Comm comm, cannam@167: rdft_kind kind, unsigned flags); cannam@167: cannam@167: /* solve.c: */ cannam@167: void XM(rdft2_solve)(const plan *ego_, const problem *p_); cannam@167: cannam@167: /* plans have same operands as rdft plans, so just re-use */ cannam@167: typedef plan_rdft plan_mpi_rdft2; cannam@167: #define MKPLAN_MPI_RDFT2(type, adt, apply) \ cannam@167: (type *)X(mkplan_rdft)(sizeof(type), adt, apply) cannam@167: cannam@167: int XM(rdft2_serial_applicable)(const problem_mpi_rdft2 *p); cannam@167: cannam@167: /* various solvers */ cannam@167: void XM(rdft2_rank_geq2_register)(planner *p); cannam@167: void XM(rdft2_rank_geq2_transposed_register)(planner *p); cannam@167: void XM(rdft2_serial_register)(planner *p);