cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: #include "kernel/ifftw.h" cannam@167: cannam@167: /***************************************************************************/ cannam@167: cannam@167: /* Rader's algorithm requires lots of modular arithmetic, and if we cannam@167: aren't careful we can have errors due to integer overflows. */ cannam@167: cannam@167: /* Compute (x * y) mod p, but watch out for integer overflows; we must cannam@167: have 0 <= {x, y} < p. cannam@167: cannam@167: If overflow is common, this routine is somewhat slower than cannam@167: e.g. using 'long long' arithmetic. However, it has the advantage cannam@167: of working when INT is 64 bits, and is also faster when overflow is cannam@167: rare. FFTW calls this via the MULMOD macro, which further cannam@167: optimizes for the case of small integers. cannam@167: */ cannam@167: cannam@167: #define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y)) cannam@167: cannam@167: INT X(safe_mulmod)(INT x, INT y, INT p) cannam@167: { cannam@167: INT r; cannam@167: cannam@167: if (y > x) cannam@167: return X(safe_mulmod)(y, x, p); cannam@167: cannam@167: A(0 <= y && x < p); cannam@167: cannam@167: r = 0; cannam@167: while (y) { cannam@167: r = ADD_MOD(r, x*(y&1), p); y >>= 1; cannam@167: x = ADD_MOD(x, x, p); cannam@167: } cannam@167: cannam@167: return r; cannam@167: } cannam@167: cannam@167: /***************************************************************************/ cannam@167: cannam@167: /* Compute n^m mod p, where m >= 0 and p > 0. If we really cared, we cannam@167: could make this tail-recursive. */ cannam@167: cannam@167: INT X(power_mod)(INT n, INT m, INT p) cannam@167: { cannam@167: A(p > 0); cannam@167: if (m == 0) cannam@167: return 1; cannam@167: else if (m % 2 == 0) { cannam@167: INT x = X(power_mod)(n, m / 2, p); cannam@167: return MULMOD(x, x, p); cannam@167: } cannam@167: else cannam@167: return MULMOD(n, X(power_mod)(n, m - 1, p), p); cannam@167: } cannam@167: cannam@167: /* the following two routines were contributed by Greg Dionne. */ cannam@167: static INT get_prime_factors(INT n, INT *primef) cannam@167: { cannam@167: INT i; cannam@167: INT size = 0; cannam@167: cannam@167: A(n % 2 == 0); /* this routine is designed only for even n */ cannam@167: primef[size++] = (INT)2; cannam@167: do { cannam@167: n >>= 1; cannam@167: } while ((n & 1) == 0); cannam@167: cannam@167: if (n == 1) cannam@167: return size; cannam@167: cannam@167: for (i = 3; i * i <= n; i += 2) cannam@167: if (!(n % i)) { cannam@167: primef[size++] = i; cannam@167: do { cannam@167: n /= i; cannam@167: } while (!(n % i)); cannam@167: } cannam@167: if (n == 1) cannam@167: return size; cannam@167: primef[size++] = n; cannam@167: return size; cannam@167: } cannam@167: cannam@167: INT X(find_generator)(INT p) cannam@167: { cannam@167: INT n, i, size; cannam@167: INT primef[16]; /* smallest number = 32589158477190044730 > 2^64 */ cannam@167: INT pm1 = p - 1; cannam@167: cannam@167: if (p == 2) cannam@167: return 1; cannam@167: cannam@167: size = get_prime_factors(pm1, primef); cannam@167: n = 2; cannam@167: for (i = 0; i < size; i++) cannam@167: if (X(power_mod)(n, pm1 / primef[i], p) == 1) { cannam@167: i = -1; cannam@167: n++; cannam@167: } cannam@167: return n; cannam@167: } cannam@167: cannam@167: /* Return first prime divisor of n (It would be at best slightly faster to cannam@167: search a static table of primes; there are 6542 primes < 2^16.) */ cannam@167: INT X(first_divisor)(INT n) cannam@167: { cannam@167: INT i; cannam@167: if (n <= 1) cannam@167: return n; cannam@167: if (n % 2 == 0) cannam@167: return 2; cannam@167: for (i = 3; i*i <= n; i += 2) cannam@167: if (n % i == 0) cannam@167: return i; cannam@167: return n; cannam@167: } cannam@167: cannam@167: int X(is_prime)(INT n) cannam@167: { cannam@167: return(n > 1 && X(first_divisor)(n) == n); cannam@167: } cannam@167: cannam@167: INT X(next_prime)(INT n) cannam@167: { cannam@167: while (!X(is_prime)(n)) ++n; cannam@167: return n; cannam@167: } cannam@167: cannam@167: int X(factors_into)(INT n, const INT *primes) cannam@167: { cannam@167: for (; *primes != 0; ++primes) cannam@167: while ((n % *primes) == 0) cannam@167: n /= *primes; cannam@167: return (n == 1); cannam@167: } cannam@167: cannam@167: /* integer square root. Return floor(sqrt(N)) */ cannam@167: INT X(isqrt)(INT n) cannam@167: { cannam@167: INT guess, iguess; cannam@167: cannam@167: A(n >= 0); cannam@167: if (n == 0) return 0; cannam@167: cannam@167: guess = n; iguess = 1; cannam@167: cannam@167: do { cannam@167: guess = (guess + iguess) / 2; cannam@167: iguess = n / guess; cannam@167: } while (guess > iguess); cannam@167: cannam@167: return guess; cannam@167: } cannam@167: cannam@167: static INT isqrt_maybe(INT n) cannam@167: { cannam@167: INT guess = X(isqrt)(n); cannam@167: return guess * guess == n ? guess : 0; cannam@167: } cannam@167: cannam@167: #define divides(a, b) (((b) % (a)) == 0) cannam@167: INT X(choose_radix)(INT r, INT n) cannam@167: { cannam@167: if (r > 0) { cannam@167: if (divides(r, n)) return r; cannam@167: return 0; cannam@167: } else if (r == 0) { cannam@167: return X(first_divisor)(n); cannam@167: } else { cannam@167: /* r is negative. If n = (-r) * q^2, take q as the radix */ cannam@167: r = 0 - r; cannam@167: return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0; cannam@167: } cannam@167: } cannam@167: cannam@167: /* return A mod N, works for all A including A < 0 */ cannam@167: INT X(modulo)(INT a, INT n) cannam@167: { cannam@167: A(n > 0); cannam@167: if (a >= 0) cannam@167: return a % n; cannam@167: else cannam@167: return (n - 1) - ((-(a + (INT)1)) % n); cannam@167: } cannam@167: cannam@167: /* TRUE if N factors into small primes */ cannam@167: int X(factors_into_small_primes)(INT n) cannam@167: { cannam@167: static const INT primes[] = { 2, 3, 5, 0 }; cannam@167: return X(factors_into)(n, primes); cannam@167: }