cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: /* plans for DFT of rank >= 2 (multidimensional) */ cannam@167: cannam@167: #include "dft/dft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: int spltrnk; cannam@167: const int *buddies; cannam@167: size_t nbuddies; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_dft super; cannam@167: cannam@167: plan *cld1, *cld2; cannam@167: const S *solver; cannam@167: } P; cannam@167: cannam@167: /* Compute multi-dimensional DFT by applying the two cld plans cannam@167: (lower-rnk DFTs). */ cannam@167: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: plan_dft *cld1, *cld2; cannam@167: cannam@167: cld1 = (plan_dft *) ego->cld1; cannam@167: cld1->apply(ego->cld1, ri, ii, ro, io); cannam@167: cannam@167: cld2 = (plan_dft *) ego->cld2; cannam@167: cld2->apply(ego->cld2, ro, io, ro, io); cannam@167: } cannam@167: cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_awake)(ego->cld1, wakefulness); cannam@167: X(plan_awake)(ego->cld2, wakefulness); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cld2); cannam@167: X(plan_destroy_internal)(ego->cld1); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: const S *s = ego->solver; cannam@167: p->print(p, "(dft-rank>=2/%d%(%p%)%(%p%))", cannam@167: s->spltrnk, ego->cld1, ego->cld2); cannam@167: } cannam@167: cannam@167: static int picksplit(const S *ego, const tensor *sz, int *rp) cannam@167: { cannam@167: A(sz->rnk > 1); /* cannot split rnk <= 1 */ cannam@167: if (!X(pickdim)(ego->spltrnk, ego->buddies, ego->nbuddies, sz, 1, rp)) cannam@167: return 0; cannam@167: *rp += 1; /* convert from dim. index to rank */ cannam@167: if (*rp >= sz->rnk) /* split must reduce rank */ cannam@167: return 0; cannam@167: return 1; cannam@167: } cannam@167: cannam@167: static int applicable0(const solver *ego_, const problem *p_, int *rp) cannam@167: { cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: const S *ego = (const S *)ego_; cannam@167: return (1 cannam@167: && FINITE_RNK(p->sz->rnk) && FINITE_RNK(p->vecsz->rnk) cannam@167: && p->sz->rnk >= 2 cannam@167: && picksplit(ego, p->sz, rp) cannam@167: ); cannam@167: } cannam@167: cannam@167: /* TODO: revise this. */ cannam@167: static int applicable(const solver *ego_, const problem *p_, cannam@167: const planner *plnr, int *rp) cannam@167: { cannam@167: const S *ego = (const S *)ego_; cannam@167: const problem_dft *p = (const problem_dft *) p_; cannam@167: cannam@167: if (!applicable0(ego_, p_, rp)) return 0; cannam@167: cannam@167: if (NO_RANK_SPLITSP(plnr) && (ego->spltrnk != ego->buddies[0])) return 0; cannam@167: cannam@167: /* Heuristic: if the vector stride is greater than the transform cannam@167: sz, don't use (prefer to do the vector loop first with a cannam@167: vrank-geq1 plan). */ cannam@167: if (NO_UGLYP(plnr)) cannam@167: if (p->vecsz->rnk > 0 && cannam@167: X(tensor_min_stride)(p->vecsz) > X(tensor_max_index)(p->sz)) cannam@167: return 0; cannam@167: cannam@167: return 1; cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const problem_dft *p; cannam@167: P *pln; cannam@167: plan *cld1 = 0, *cld2 = 0; cannam@167: tensor *sz1, *sz2, *vecszi, *sz2i; cannam@167: int spltrnk; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(dft_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: if (!applicable(ego_, p_, plnr, &spltrnk)) cannam@167: return (plan *) 0; cannam@167: cannam@167: p = (const problem_dft *) p_; cannam@167: X(tensor_split)(p->sz, &sz1, spltrnk, &sz2); cannam@167: vecszi = X(tensor_copy_inplace)(p->vecsz, INPLACE_OS); cannam@167: sz2i = X(tensor_copy_inplace)(sz2, INPLACE_OS); cannam@167: cannam@167: cld1 = X(mkplan_d)(plnr, cannam@167: X(mkproblem_dft_d)(X(tensor_copy)(sz2), cannam@167: X(tensor_append)(p->vecsz, sz1), cannam@167: p->ri, p->ii, p->ro, p->io)); cannam@167: if (!cld1) goto nada; cannam@167: cannam@167: cld2 = X(mkplan_d)(plnr, cannam@167: X(mkproblem_dft_d)( cannam@167: X(tensor_copy_inplace)(sz1, INPLACE_OS), cannam@167: X(tensor_append)(vecszi, sz2i), cannam@167: p->ro, p->io, p->ro, p->io)); cannam@167: if (!cld2) goto nada; cannam@167: cannam@167: pln = MKPLAN_DFT(P, &padt, apply); cannam@167: cannam@167: pln->cld1 = cld1; cannam@167: pln->cld2 = cld2; cannam@167: cannam@167: pln->solver = ego; cannam@167: X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops); cannam@167: cannam@167: X(tensor_destroy4)(sz1, sz2, vecszi, sz2i); cannam@167: cannam@167: return &(pln->super.super); cannam@167: cannam@167: nada: cannam@167: X(plan_destroy_internal)(cld2); cannam@167: X(plan_destroy_internal)(cld1); cannam@167: X(tensor_destroy4)(sz1, sz2, vecszi, sz2i); cannam@167: return (plan *) 0; cannam@167: } cannam@167: cannam@167: static solver *mksolver(int spltrnk, const int *buddies, size_t nbuddies) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: slv->spltrnk = spltrnk; cannam@167: slv->buddies = buddies; cannam@167: slv->nbuddies = nbuddies; cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: void X(dft_rank_geq2_register)(planner *p) cannam@167: { cannam@167: static const int buddies[] = { 1, 0, -2 }; cannam@167: size_t i; cannam@167: cannam@167: for (i = 0; i < NELEM(buddies); ++i) cannam@167: REGISTER_SOLVER(p, mksolver(buddies[i], buddies, NELEM(buddies))); cannam@167: cannam@167: /* FIXME: cannam@167: cannam@167: Should we try more buddies? cannam@167: cannam@167: Another possible variant is to swap cld1 and cld2 (or rather, cannam@167: to swap their problems; they are not interchangeable because cannam@167: cld2 must be in-place). In past versions of FFTW, however, I cannam@167: seem to recall that such rearrangements have made little or no cannam@167: difference. cannam@167: */ cannam@167: }