cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: cannam@127: /* Compute the complex DFT by combining R2HC RDFTs on the real cannam@127: and imaginary parts. This could be useful for people just wanting cannam@127: to link to the real codelets and not the complex ones. It could cannam@127: also even be faster than the complex algorithms for split (as opposed cannam@127: to interleaved) real/imag complex data. */ cannam@127: cannam@127: #include "rdft.h" cannam@127: #include "dft.h" cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_dft super; cannam@127: plan *cld; cannam@127: INT ishift, oshift; cannam@127: INT os; cannam@127: INT n; cannam@127: } P; cannam@127: cannam@127: static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT n; cannam@127: cannam@127: UNUSED(ii); cannam@127: cannam@127: { /* transform vector of real & imag parts: */ cannam@127: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@127: cld->apply((plan *) cld, ri + ego->ishift, ro + ego->oshift); cannam@127: } cannam@127: cannam@127: n = ego->n; cannam@127: if (n > 1) { cannam@127: INT i, os = ego->os; cannam@127: for (i = 1; i < (n + 1)/2; ++i) { cannam@127: E rop, iop, iom, rom; cannam@127: rop = ro[os * i]; cannam@127: iop = io[os * i]; cannam@127: rom = ro[os * (n - i)]; cannam@127: iom = io[os * (n - i)]; cannam@127: ro[os * i] = rop - iom; cannam@127: io[os * i] = iop + rom; cannam@127: ro[os * (n - i)] = rop + iom; cannam@127: io[os * (n - i)] = iop - rom; cannam@127: } cannam@127: } cannam@127: } cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_awake)(ego->cld, wakefulness); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_destroy_internal)(ego->cld); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: p->print(p, "(dft-r2hc-%D%(%p%))", ego->n, ego->cld); cannam@127: } cannam@127: cannam@127: cannam@127: static int applicable0(const problem *p_) cannam@127: { cannam@127: const problem_dft *p = (const problem_dft *) p_; cannam@127: return ((p->sz->rnk == 1 && p->vecsz->rnk == 0) cannam@127: || (p->sz->rnk == 0 && FINITE_RNK(p->vecsz->rnk)) cannam@127: ); cannam@127: } cannam@127: cannam@127: static int splitp(R *r, R *i, INT n, INT s) cannam@127: { cannam@127: return ((r > i ? (r - i) : (i - r)) >= n * (s > 0 ? s : 0-s)); cannam@127: } cannam@127: cannam@127: static int applicable(const problem *p_, const planner *plnr) cannam@127: { cannam@127: if (!applicable0(p_)) return 0; cannam@127: cannam@127: { cannam@127: const problem_dft *p = (const problem_dft *) p_; cannam@127: cannam@127: /* rank-0 problems are always OK */ cannam@127: if (p->sz->rnk == 0) return 1; cannam@127: cannam@127: /* this solver is ok for split arrays */ cannam@127: if (p->sz->rnk == 1 && cannam@127: splitp(p->ri, p->ii, p->sz->dims[0].n, p->sz->dims[0].is) && cannam@127: splitp(p->ro, p->io, p->sz->dims[0].n, p->sz->dims[0].os)) cannam@127: return 1; cannam@127: cannam@127: return !(NO_DFT_R2HCP(plnr)); cannam@127: } cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@127: { cannam@127: P *pln; cannam@127: const problem_dft *p; cannam@127: plan *cld; cannam@127: INT ishift = 0, oshift = 0; cannam@127: cannam@127: static const plan_adt padt = { cannam@127: X(dft_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: UNUSED(ego_); cannam@127: if (!applicable(p_, plnr)) cannam@127: return (plan *)0; cannam@127: cannam@127: p = (const problem_dft *) p_; cannam@127: cannam@127: { cannam@127: tensor *ri_vec = X(mktensor_1d)(2, p->ii - p->ri, p->io - p->ro); cannam@127: tensor *cld_vec = X(tensor_append)(ri_vec, p->vecsz); cannam@127: int i; cannam@127: for (i = 0; i < cld_vec->rnk; ++i) { /* make all istrides > 0 */ cannam@127: if (cld_vec->dims[i].is < 0) { cannam@127: INT nm1 = cld_vec->dims[i].n - 1; cannam@127: ishift -= nm1 * (cld_vec->dims[i].is *= -1); cannam@127: oshift -= nm1 * (cld_vec->dims[i].os *= -1); cannam@127: } cannam@127: } cannam@127: cld = X(mkplan_d)(plnr, cannam@127: X(mkproblem_rdft_1)(p->sz, cld_vec, cannam@127: p->ri + ishift, cannam@127: p->ro + oshift, R2HC)); cannam@127: X(tensor_destroy2)(ri_vec, cld_vec); cannam@127: } cannam@127: if (!cld) return (plan *)0; cannam@127: cannam@127: pln = MKPLAN_DFT(P, &padt, apply); cannam@127: cannam@127: if (p->sz->rnk == 0) { cannam@127: pln->n = 1; cannam@127: pln->os = 0; cannam@127: } cannam@127: else { cannam@127: pln->n = p->sz->dims[0].n; cannam@127: pln->os = p->sz->dims[0].os; cannam@127: } cannam@127: pln->ishift = ishift; cannam@127: pln->oshift = oshift; cannam@127: cannam@127: pln->cld = cld; cannam@127: cannam@127: pln->super.super.ops = cld->ops; cannam@127: pln->super.super.ops.other += 8 * ((pln->n - 1)/2); cannam@127: pln->super.super.ops.add += 4 * ((pln->n - 1)/2); cannam@127: pln->super.super.ops.other += 1; /* estimator hack for nop plans */ cannam@127: cannam@127: return &(pln->super.super); cannam@127: } cannam@127: cannam@127: /* constructor */ cannam@127: static solver *mksolver(void) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void X(dft_r2hc_register)(planner *p) cannam@127: { cannam@127: REGISTER_SOLVER(p, mksolver()); cannam@127: }