cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: #include "rdft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: rdft_kind kind; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: twid *td; cannam@95: INT n, is, os; cannam@95: rdft_kind kind; cannam@95: } P; cannam@95: cannam@95: /***************************************************************************/ cannam@95: cannam@95: static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1) cannam@95: { cannam@95: INT i; cannam@95: cannam@95: E rr = x[0], ri = 0; cannam@95: x += 1; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: rr += x[0] * w[0]; cannam@95: ri += x[1] * w[1]; cannam@95: x += 2; w += 2; cannam@95: } cannam@95: *or0 = rr; cannam@95: *oi1 = ri; cannam@95: } cannam@95: cannam@95: static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr) cannam@95: { cannam@95: INT i; cannam@95: E sr; cannam@95: o[0] = sr = xr[0]; o += 1; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: R a, b; cannam@95: a = xr[i * xs]; cannam@95: b = xr[(n - i) * xs]; cannam@95: sr += (o[0] = a + b); cannam@95: #if FFT_SIGN == -1 cannam@95: o[1] = b - a; cannam@95: #else cannam@95: o[1] = a - b; cannam@95: #endif cannam@95: o += 2; cannam@95: } cannam@95: *pr = sr; cannam@95: } cannam@95: cannam@95: static void apply_r2hc(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT i; cannam@95: INT n = ego->n, is = ego->is, os = ego->os; cannam@95: const R *W = ego->td->W; cannam@95: E *buf; cannam@95: size_t bufsz = n * sizeof(E); cannam@95: cannam@95: BUF_ALLOC(E *, buf, bufsz); cannam@95: hartley_r2hc(n, I, is, buf, O); cannam@95: cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os); cannam@95: W += n - 1; cannam@95: } cannam@95: cannam@95: BUF_FREE(buf, bufsz); cannam@95: } cannam@95: cannam@95: cannam@95: static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1) cannam@95: { cannam@95: INT i; cannam@95: cannam@95: E rr = x[0], ii = 0; cannam@95: x += 1; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: rr += x[0] * w[0]; cannam@95: ii += x[1] * w[1]; cannam@95: x += 2; w += 2; cannam@95: } cannam@95: #if FFT_SIGN == -1 cannam@95: *or0 = rr - ii; cannam@95: *or1 = rr + ii; cannam@95: #else cannam@95: *or0 = rr + ii; cannam@95: *or1 = rr - ii; cannam@95: #endif cannam@95: } cannam@95: cannam@95: static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr) cannam@95: { cannam@95: INT i; cannam@95: E sr; cannam@95: cannam@95: o[0] = sr = x[0]; o += 1; cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: sr += (o[0] = x[i * xs] + x[i * xs]); cannam@95: o[1] = x[(n - i) * xs] + x[(n - i) * xs]; cannam@95: o += 2; cannam@95: } cannam@95: *pr = sr; cannam@95: } cannam@95: cannam@95: static void apply_hc2r(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT i; cannam@95: INT n = ego->n, is = ego->is, os = ego->os; cannam@95: const R *W = ego->td->W; cannam@95: E *buf; cannam@95: size_t bufsz = n * sizeof(E); cannam@95: cannam@95: BUF_ALLOC(E *, buf, bufsz); cannam@95: hartley_hc2r(n, I, is, buf, O); cannam@95: cannam@95: for (i = 1; i + i < n; ++i) { cannam@95: cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os); cannam@95: W += n - 1; cannam@95: } cannam@95: cannam@95: BUF_FREE(buf, bufsz); cannam@95: } cannam@95: cannam@95: cannam@95: /***************************************************************************/ cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: static const tw_instr half_tw[] = { cannam@95: { TW_HALF, 1, 0 }, cannam@95: { TW_NEXT, 1, 0 } cannam@95: }; cannam@95: cannam@95: X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n, cannam@95: (ego->n - 1) / 2); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: cannam@95: p->print(p, "(rdft-generic-%s-%D)", cannam@95: ego->kind == R2HC ? "r2hc" : "hc2r", cannam@95: ego->n); cannam@95: } cannam@95: cannam@95: static int applicable(const S *ego, const problem *p_, cannam@95: const planner *plnr) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: return (1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk == 0 cannam@95: && (p->sz->dims[0].n % 2) == 1 cannam@95: && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD) cannam@95: && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW) cannam@95: && X(is_prime)(p->sz->dims[0].n) cannam@95: && p->kind[0] == ego->kind cannam@95: ); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: const S *ego = (const S *)ego_; cannam@95: const problem_rdft *p; cannam@95: P *pln; cannam@95: INT n; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), awake, print, X(plan_null_destroy) cannam@95: }; cannam@95: cannam@95: if (!applicable(ego, p_, plnr)) cannam@95: return (plan *)0; cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: pln = MKPLAN_RDFT(P, &padt, cannam@95: R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r); cannam@95: cannam@95: pln->n = n = p->sz->dims[0].n; cannam@95: pln->is = p->sz->dims[0].is; cannam@95: pln->os = p->sz->dims[0].os; cannam@95: pln->td = 0; cannam@95: pln->kind = ego->kind; cannam@95: cannam@95: pln->super.super.ops.add = (n-1) * 2.5; cannam@95: pln->super.super.ops.mul = 0; cannam@95: pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ; cannam@95: #if 0 /* these are nice pipelined sequential loads and should cost nothing */ cannam@95: pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */ cannam@95: #endif cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: static solver *mksolver(rdft_kind kind) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: slv->kind = kind; cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(rdft_generic_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver(R2HC)); cannam@95: REGISTER_SOLVER(p, mksolver(HC2R)); cannam@95: }