Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: Chris@82: /* Solve an R2HC/HC2R problem via post/pre processing of a DHT. This Chris@82: is mainly useful because we can use Rader to compute DHTs of prime Chris@82: sizes. It also allows us to express hc2r problems in terms of r2hc Chris@82: (via dht-r2hc), and to do hc2r problems without destroying the input. */ Chris@82: Chris@82: #include "rdft/rdft.h" Chris@82: Chris@82: typedef struct { Chris@82: solver super; Chris@82: } S; Chris@82: Chris@82: typedef struct { Chris@82: plan_rdft super; Chris@82: plan *cld; Chris@82: INT is, os; Chris@82: INT n; Chris@82: } P; Chris@82: Chris@82: static void apply_r2hc(const plan *ego_, R *I, R *O) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT os; Chris@82: INT i, n; Chris@82: Chris@82: { Chris@82: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@82: cld->apply((plan *) cld, I, O); Chris@82: } Chris@82: Chris@82: n = ego->n; Chris@82: os = ego->os; Chris@82: for (i = 1; i < n - i; ++i) { Chris@82: E a, b; Chris@82: a = K(0.5) * O[os * i]; Chris@82: b = K(0.5) * O[os * (n - i)]; Chris@82: O[os * i] = a + b; Chris@82: #if FFT_SIGN == -1 Chris@82: O[os * (n - i)] = b - a; Chris@82: #else Chris@82: O[os * (n - i)] = a - b; Chris@82: #endif Chris@82: } Chris@82: } Chris@82: Chris@82: /* hc2r, destroying input as usual */ Chris@82: static void apply_hc2r(const plan *ego_, R *I, R *O) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT is = ego->is; Chris@82: INT i, n = ego->n; Chris@82: Chris@82: for (i = 1; i < n - i; ++i) { Chris@82: E a, b; Chris@82: a = I[is * i]; Chris@82: b = I[is * (n - i)]; Chris@82: #if FFT_SIGN == -1 Chris@82: I[is * i] = a - b; Chris@82: I[is * (n - i)] = a + b; Chris@82: #else Chris@82: I[is * i] = a + b; Chris@82: I[is * (n - i)] = a - b; Chris@82: #endif Chris@82: } Chris@82: Chris@82: { Chris@82: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@82: cld->apply((plan *) cld, I, O); Chris@82: } Chris@82: } Chris@82: Chris@82: /* hc2r, without destroying input */ Chris@82: static void apply_hc2r_save(const plan *ego_, R *I, R *O) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: INT is = ego->is, os = ego->os; Chris@82: INT i, n = ego->n; Chris@82: Chris@82: O[0] = I[0]; Chris@82: for (i = 1; i < n - i; ++i) { Chris@82: E a, b; Chris@82: a = I[is * i]; Chris@82: b = I[is * (n - i)]; Chris@82: #if FFT_SIGN == -1 Chris@82: O[os * i] = a - b; Chris@82: O[os * (n - i)] = a + b; Chris@82: #else Chris@82: O[os * i] = a + b; Chris@82: O[os * (n - i)] = a - b; Chris@82: #endif Chris@82: } Chris@82: if (i == n - i) Chris@82: O[os * i] = I[is * i]; Chris@82: Chris@82: { Chris@82: plan_rdft *cld = (plan_rdft *) ego->cld; Chris@82: cld->apply((plan *) cld, O, O); Chris@82: } Chris@82: } Chris@82: Chris@82: static void awake(plan *ego_, enum wakefulness wakefulness) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_awake)(ego->cld, wakefulness); Chris@82: } Chris@82: Chris@82: static void destroy(plan *ego_) Chris@82: { Chris@82: P *ego = (P *) ego_; Chris@82: X(plan_destroy_internal)(ego->cld); Chris@82: } Chris@82: Chris@82: static void print(const plan *ego_, printer *p) Chris@82: { Chris@82: const P *ego = (const P *) ego_; Chris@82: p->print(p, "(%s-dht-%D%(%p%))", Chris@82: ego->super.apply == apply_r2hc ? "r2hc" : "hc2r", Chris@82: ego->n, ego->cld); Chris@82: } Chris@82: Chris@82: static int applicable0(const solver *ego_, const problem *p_) Chris@82: { Chris@82: const problem_rdft *p = (const problem_rdft *) p_; Chris@82: UNUSED(ego_); Chris@82: Chris@82: return (1 Chris@82: && p->sz->rnk == 1 Chris@82: && p->vecsz->rnk == 0 Chris@82: && (p->kind[0] == R2HC || p->kind[0] == HC2R) Chris@82: Chris@82: /* hack: size-2 DHT etc. are defined as being equivalent Chris@82: to size-2 R2HC in problem.c, so we need this to prevent Chris@82: infinite loops for size 2 in EXHAUSTIVE mode: */ Chris@82: && p->sz->dims[0].n > 2 Chris@82: ); Chris@82: } Chris@82: Chris@82: static int applicable(const solver *ego, const problem *p_, Chris@82: const planner *plnr) Chris@82: { Chris@82: return (!NO_SLOWP(plnr) && applicable0(ego, p_)); Chris@82: } Chris@82: Chris@82: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) Chris@82: { Chris@82: P *pln; Chris@82: const problem_rdft *p; Chris@82: problem *cldp; Chris@82: plan *cld; Chris@82: Chris@82: static const plan_adt padt = { Chris@82: X(rdft_solve), awake, print, destroy Chris@82: }; Chris@82: Chris@82: if (!applicable(ego_, p_, plnr)) Chris@82: return (plan *)0; Chris@82: Chris@82: p = (const problem_rdft *) p_; Chris@82: Chris@82: if (p->kind[0] == R2HC || !NO_DESTROY_INPUTP(plnr)) Chris@82: cldp = X(mkproblem_rdft_1)(p->sz, p->vecsz, p->I, p->O, DHT); Chris@82: else { Chris@82: tensor *sz = X(tensor_copy_inplace)(p->sz, INPLACE_OS); Chris@82: cldp = X(mkproblem_rdft_1)(sz, p->vecsz, p->O, p->O, DHT); Chris@82: X(tensor_destroy)(sz); Chris@82: } Chris@82: cld = X(mkplan_d)(plnr, cldp); Chris@82: if (!cld) return (plan *)0; Chris@82: Chris@82: pln = MKPLAN_RDFT(P, &padt, p->kind[0] == R2HC ? Chris@82: apply_r2hc : (NO_DESTROY_INPUTP(plnr) ? Chris@82: apply_hc2r_save : apply_hc2r)); Chris@82: pln->n = p->sz->dims[0].n; Chris@82: pln->is = p->sz->dims[0].is; Chris@82: pln->os = p->sz->dims[0].os; Chris@82: pln->cld = cld; Chris@82: Chris@82: pln->super.super.ops = cld->ops; Chris@82: pln->super.super.ops.other += 4 * ((pln->n - 1)/2); Chris@82: pln->super.super.ops.add += 2 * ((pln->n - 1)/2); Chris@82: if (p->kind[0] == R2HC) Chris@82: pln->super.super.ops.mul += 2 * ((pln->n - 1)/2); Chris@82: if (pln->super.apply == apply_hc2r_save) Chris@82: pln->super.super.ops.other += 2 + (pln->n % 2 ? 0 : 2); Chris@82: Chris@82: return &(pln->super.super); Chris@82: } Chris@82: Chris@82: /* constructor */ Chris@82: static solver *mksolver(void) Chris@82: { Chris@82: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; Chris@82: S *slv = MKSOLVER(S, &sadt); Chris@82: return &(slv->super); Chris@82: } Chris@82: Chris@82: void X(rdft_dht_register)(planner *p) Chris@82: { Chris@82: REGISTER_SOLVER(p, mksolver()); Chris@82: }