Chris@82: /* Chris@82: * Copyright (c) 2003, 2007-14 Matteo Frigo Chris@82: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology Chris@82: * Chris@82: * This program is free software; you can redistribute it and/or modify Chris@82: * it under the terms of the GNU General Public License as published by Chris@82: * the Free Software Foundation; either version 2 of the License, or Chris@82: * (at your option) any later version. Chris@82: * Chris@82: * This program is distributed in the hope that it will be useful, Chris@82: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@82: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@82: * GNU General Public License for more details. Chris@82: * Chris@82: * You should have received a copy of the GNU General Public License Chris@82: * along with this program; if not, write to the Free Software Chris@82: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@82: * Chris@82: */ Chris@82: Chris@82: Chris@82: #include "kernel/ifftw.h" Chris@82: Chris@82: static int signof(INT x) Chris@82: { Chris@82: if (x < 0) return -1; Chris@82: if (x == 0) return 0; Chris@82: /* if (x > 0) */ return 1; Chris@82: } Chris@82: Chris@82: /* total order among iodim's */ Chris@82: int X(dimcmp)(const iodim *a, const iodim *b) Chris@82: { Chris@82: INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); Chris@82: INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os); Chris@82: INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo); Chris@82: Chris@82: /* in descending order of min{istride, ostride} */ Chris@82: if (sam != sbm) Chris@82: return signof(sbm - sam); Chris@82: Chris@82: /* in case of a tie, in descending order of istride */ Chris@82: if (sbi != sai) Chris@82: return signof(sbi - sai); Chris@82: Chris@82: /* in case of a tie, in descending order of ostride */ Chris@82: if (sbo != sao) Chris@82: return signof(sbo - sao); Chris@82: Chris@82: /* in case of a tie, in ascending order of n */ Chris@82: return signof(a->n - b->n); Chris@82: } Chris@82: Chris@82: static void canonicalize(tensor *x) Chris@82: { Chris@82: if (x->rnk > 1) { Chris@82: qsort(x->dims, (unsigned)x->rnk, sizeof(iodim), Chris@82: (int (*)(const void *, const void *))X(dimcmp)); Chris@82: } Chris@82: } Chris@82: Chris@82: static int compare_by_istride(const iodim *a, const iodim *b) Chris@82: { Chris@82: INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is); Chris@82: Chris@82: /* in descending order of istride */ Chris@82: return signof(sbi - sai); Chris@82: } Chris@82: Chris@82: static tensor *really_compress(const tensor *sz) Chris@82: { Chris@82: int i, rnk; Chris@82: tensor *x; Chris@82: Chris@82: A(FINITE_RNK(sz->rnk)); Chris@82: for (i = rnk = 0; i < sz->rnk; ++i) { Chris@82: A(sz->dims[i].n > 0); Chris@82: if (sz->dims[i].n != 1) Chris@82: ++rnk; Chris@82: } Chris@82: Chris@82: x = X(mktensor)(rnk); Chris@82: for (i = rnk = 0; i < sz->rnk; ++i) { Chris@82: if (sz->dims[i].n != 1) Chris@82: x->dims[rnk++] = sz->dims[i]; Chris@82: } Chris@82: return x; Chris@82: } Chris@82: Chris@82: /* Like tensor_copy, but eliminate n == 1 dimensions, which Chris@82: never affect any transform or transform vector. Chris@82: Chris@82: Also, we sort the tensor into a canonical order of decreasing Chris@82: strides (see X(dimcmp) for an exact definition). In general, Chris@82: processing a loop/array in order of decreasing stride will improve Chris@82: locality. Both forward and backwards traversal of the tensor are Chris@82: considered e.g. by vrank-geq1, so sorting in increasing Chris@82: vs. decreasing order is not really important. */ Chris@82: tensor *X(tensor_compress)(const tensor *sz) Chris@82: { Chris@82: tensor *x = really_compress(sz); Chris@82: canonicalize(x); Chris@82: return x; Chris@82: } Chris@82: Chris@82: /* Return whether the strides of a and b are such that they form an Chris@82: effective contiguous 1d array. Assumes that a.is >= b.is. */ Chris@82: static int strides_contig(iodim *a, iodim *b) Chris@82: { Chris@82: return (a->is == b->is * b->n && a->os == b->os * b->n); Chris@82: } Chris@82: Chris@82: /* Like tensor_compress, but also compress into one dimension any Chris@82: group of dimensions that form a contiguous block of indices with Chris@82: some stride. (This can safely be done for transform vector sizes.) */ Chris@82: tensor *X(tensor_compress_contiguous)(const tensor *sz) Chris@82: { Chris@82: int i, rnk; Chris@82: tensor *sz2, *x; Chris@82: Chris@82: if (X(tensor_sz)(sz) == 0) Chris@82: return X(mktensor)(RNK_MINFTY); Chris@82: Chris@82: sz2 = really_compress(sz); Chris@82: A(FINITE_RNK(sz2->rnk)); Chris@82: Chris@82: if (sz2->rnk <= 1) { /* nothing to compress. */ Chris@82: if (0) { Chris@82: /* this call is redundant, because "sz->rnk <= 1" implies Chris@82: that the tensor is already canonical, but I am writing Chris@82: it explicitly because "logically" we need to canonicalize Chris@82: the tensor before returning. */ Chris@82: canonicalize(sz2); Chris@82: } Chris@82: return sz2; Chris@82: } Chris@82: Chris@82: /* sort in descending order of |istride|, so that compressible Chris@82: dimensions appear contigously */ Chris@82: qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim), Chris@82: (int (*)(const void *, const void *))compare_by_istride); Chris@82: Chris@82: /* compute what the rank will be after compression */ Chris@82: for (i = rnk = 1; i < sz2->rnk; ++i) Chris@82: if (!strides_contig(sz2->dims + i - 1, sz2->dims + i)) Chris@82: ++rnk; Chris@82: Chris@82: /* merge adjacent dimensions whenever possible */ Chris@82: x = X(mktensor)(rnk); Chris@82: x->dims[0] = sz2->dims[0]; Chris@82: for (i = rnk = 1; i < sz2->rnk; ++i) { Chris@82: if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) { Chris@82: x->dims[rnk - 1].n *= sz2->dims[i].n; Chris@82: x->dims[rnk - 1].is = sz2->dims[i].is; Chris@82: x->dims[rnk - 1].os = sz2->dims[i].os; Chris@82: } else { Chris@82: A(rnk < x->rnk); Chris@82: x->dims[rnk++] = sz2->dims[i]; Chris@82: } Chris@82: } Chris@82: Chris@82: X(tensor_destroy)(sz2); Chris@82: Chris@82: /* reduce to canonical form */ Chris@82: canonicalize(x); Chris@82: return x; Chris@82: } Chris@82: Chris@82: /* The inverse of X(tensor_append): splits the sz tensor into Chris@82: tensor a followed by tensor b, where a's rank is arnk. */ Chris@82: void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b) Chris@82: { Chris@82: A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk)); Chris@82: Chris@82: *a = X(tensor_copy_sub)(sz, 0, arnk); Chris@82: *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk); Chris@82: } Chris@82: Chris@82: /* TRUE if the two tensors are equal */ Chris@82: int X(tensor_equal)(const tensor *a, const tensor *b) Chris@82: { Chris@82: if (a->rnk != b->rnk) Chris@82: return 0; Chris@82: Chris@82: if (FINITE_RNK(a->rnk)) { Chris@82: int i; Chris@82: for (i = 0; i < a->rnk; ++i) Chris@82: if (0 Chris@82: || a->dims[i].n != b->dims[i].n Chris@82: || a->dims[i].is != b->dims[i].is Chris@82: || a->dims[i].os != b->dims[i].os Chris@82: ) Chris@82: return 0; Chris@82: } Chris@82: Chris@82: return 1; Chris@82: } Chris@82: Chris@82: /* TRUE if the sets of input and output locations described by Chris@82: (append sz vecsz) are the same */ Chris@82: int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz) Chris@82: { Chris@82: tensor *t = X(tensor_append)(sz, vecsz); Chris@82: tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS); Chris@82: tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS); Chris@82: tensor *tic = X(tensor_compress_contiguous)(ti); Chris@82: tensor *toc = X(tensor_compress_contiguous)(to); Chris@82: Chris@82: int retval = X(tensor_equal)(tic, toc); Chris@82: Chris@82: X(tensor_destroy)(t); Chris@82: X(tensor_destroy4)(ti, to, tic, toc); Chris@82: Chris@82: return retval; Chris@82: }