cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: /* threads.c: Portable thread spawning for loops, via the X(spawn_loop) cannam@167: function. The first portion of this file is a set of macros to cannam@167: spawn and join threads on various systems. */ cannam@167: cannam@167: #include "threads/threads.h" cannam@167: #include "api/api.h" cannam@167: cannam@167: #if defined(USING_POSIX_THREADS) cannam@167: cannam@167: #include cannam@167: cannam@167: #ifdef HAVE_UNISTD_H cannam@167: # include cannam@167: #endif cannam@167: cannam@167: /* imlementation of semaphores and mutexes: */ cannam@167: #if (defined(_POSIX_SEMAPHORES) && (_POSIX_SEMAPHORES >= 200112L)) cannam@167: cannam@167: /* If optional POSIX semaphores are supported, use them to cannam@167: implement both semaphores and mutexes. */ cannam@167: # include cannam@167: # include cannam@167: cannam@167: typedef sem_t os_sem_t; cannam@167: cannam@167: static void os_sem_init(os_sem_t *s) { sem_init(s, 0, 0); } cannam@167: static void os_sem_destroy(os_sem_t *s) { sem_destroy(s); } cannam@167: cannam@167: static void os_sem_down(os_sem_t *s) cannam@167: { cannam@167: int err; cannam@167: do { cannam@167: err = sem_wait(s); cannam@167: } while (err == -1 && errno == EINTR); cannam@167: CK(err == 0); cannam@167: } cannam@167: cannam@167: static void os_sem_up(os_sem_t *s) { sem_post(s); } cannam@167: cannam@167: /* cannam@167: The reason why we use sem_t to implement mutexes is that I have cannam@167: seen mysterious hangs with glibc-2.7 and linux-2.6.22 when using cannam@167: pthread_mutex_t, but no hangs with sem_t or with linux >= cannam@167: 2.6.24. For lack of better information, sem_t looks like the cannam@167: safest choice. cannam@167: */ cannam@167: typedef sem_t os_mutex_t; cannam@167: static void os_mutex_init(os_mutex_t *s) { sem_init(s, 0, 1); } cannam@167: #define os_mutex_destroy os_sem_destroy cannam@167: #define os_mutex_lock os_sem_down cannam@167: #define os_mutex_unlock os_sem_up cannam@167: cannam@167: #else cannam@167: cannam@167: /* If optional POSIX semaphores are not defined, use pthread cannam@167: mutexes for mutexes, and simulate semaphores with condition cannam@167: variables */ cannam@167: typedef pthread_mutex_t os_mutex_t; cannam@167: cannam@167: static void os_mutex_init(os_mutex_t *s) cannam@167: { cannam@167: pthread_mutex_init(s, (pthread_mutexattr_t *)0); cannam@167: } cannam@167: cannam@167: static void os_mutex_destroy(os_mutex_t *s) { pthread_mutex_destroy(s); } cannam@167: static void os_mutex_lock(os_mutex_t *s) { pthread_mutex_lock(s); } cannam@167: static void os_mutex_unlock(os_mutex_t *s) { pthread_mutex_unlock(s); } cannam@167: cannam@167: typedef struct { cannam@167: pthread_mutex_t m; cannam@167: pthread_cond_t c; cannam@167: volatile int x; cannam@167: } os_sem_t; cannam@167: cannam@167: static void os_sem_init(os_sem_t *s) cannam@167: { cannam@167: pthread_mutex_init(&s->m, (pthread_mutexattr_t *)0); cannam@167: pthread_cond_init(&s->c, (pthread_condattr_t *)0); cannam@167: cannam@167: /* wrap initialization in lock to exploit the release cannam@167: semantics of pthread_mutex_unlock() */ cannam@167: pthread_mutex_lock(&s->m); cannam@167: s->x = 0; cannam@167: pthread_mutex_unlock(&s->m); cannam@167: } cannam@167: cannam@167: static void os_sem_destroy(os_sem_t *s) cannam@167: { cannam@167: pthread_mutex_destroy(&s->m); cannam@167: pthread_cond_destroy(&s->c); cannam@167: } cannam@167: cannam@167: static void os_sem_down(os_sem_t *s) cannam@167: { cannam@167: pthread_mutex_lock(&s->m); cannam@167: while (s->x <= 0) cannam@167: pthread_cond_wait(&s->c, &s->m); cannam@167: --s->x; cannam@167: pthread_mutex_unlock(&s->m); cannam@167: } cannam@167: cannam@167: static void os_sem_up(os_sem_t *s) cannam@167: { cannam@167: pthread_mutex_lock(&s->m); cannam@167: ++s->x; cannam@167: pthread_cond_signal(&s->c); cannam@167: pthread_mutex_unlock(&s->m); cannam@167: } cannam@167: cannam@167: #endif cannam@167: cannam@167: #define FFTW_WORKER void * cannam@167: cannam@167: static void os_create_thread(FFTW_WORKER (*worker)(void *arg), cannam@167: void *arg) cannam@167: { cannam@167: pthread_attr_t attr; cannam@167: pthread_t tid; cannam@167: cannam@167: pthread_attr_init(&attr); cannam@167: pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); cannam@167: pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); cannam@167: cannam@167: pthread_create(&tid, &attr, worker, (void *)arg); cannam@167: pthread_attr_destroy(&attr); cannam@167: } cannam@167: cannam@167: static void os_destroy_thread(void) cannam@167: { cannam@167: pthread_exit((void *)0); cannam@167: } cannam@167: cannam@167: /* support for static mutexes */ cannam@167: typedef pthread_mutex_t os_static_mutex_t; cannam@167: #define OS_STATIC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER cannam@167: static void os_static_mutex_lock(os_static_mutex_t *s) { pthread_mutex_lock(s); } cannam@167: static void os_static_mutex_unlock(os_static_mutex_t *s) { pthread_mutex_unlock(s); } cannam@167: cannam@167: #elif defined(__WIN32__) || defined(_WIN32) || defined(_WINDOWS) cannam@167: /* hack: windef.h defines INT for its own purposes and this causes cannam@167: a conflict with our own INT in ifftw.h. Divert the windows cannam@167: definition into another name unlikely to cause a conflict */ cannam@167: #define INT magnus_ab_INTegro_seclorum_nascitur_ordo cannam@167: #include cannam@167: #include cannam@167: #include cannam@167: #undef INT cannam@167: cannam@167: typedef HANDLE os_mutex_t; cannam@167: cannam@167: static void os_mutex_init(os_mutex_t *s) cannam@167: { cannam@167: *s = CreateMutex(NULL, FALSE, NULL); cannam@167: } cannam@167: cannam@167: static void os_mutex_destroy(os_mutex_t *s) cannam@167: { cannam@167: CloseHandle(*s); cannam@167: } cannam@167: cannam@167: static void os_mutex_lock(os_mutex_t *s) cannam@167: { cannam@167: WaitForSingleObject(*s, INFINITE); cannam@167: } cannam@167: cannam@167: static void os_mutex_unlock(os_mutex_t *s) cannam@167: { cannam@167: ReleaseMutex(*s); cannam@167: } cannam@167: cannam@167: typedef HANDLE os_sem_t; cannam@167: cannam@167: static void os_sem_init(os_sem_t *s) cannam@167: { cannam@167: *s = CreateSemaphore(NULL, 0, 0x7FFFFFFFL, NULL); cannam@167: } cannam@167: cannam@167: static void os_sem_destroy(os_sem_t *s) cannam@167: { cannam@167: CloseHandle(*s); cannam@167: } cannam@167: cannam@167: static void os_sem_down(os_sem_t *s) cannam@167: { cannam@167: WaitForSingleObject(*s, INFINITE); cannam@167: } cannam@167: cannam@167: static void os_sem_up(os_sem_t *s) cannam@167: { cannam@167: ReleaseSemaphore(*s, 1, NULL); cannam@167: } cannam@167: cannam@167: #define FFTW_WORKER unsigned __stdcall cannam@167: typedef unsigned (__stdcall *winthread_start) (void *); cannam@167: cannam@167: static void os_create_thread(winthread_start worker, cannam@167: void *arg) cannam@167: { cannam@167: _beginthreadex((void *)NULL, /* security attrib */ cannam@167: 0, /* stack size */ cannam@167: worker, /* start address */ cannam@167: arg, /* parameters */ cannam@167: 0, /* creation flags */ cannam@167: (unsigned *)NULL); /* tid */ cannam@167: } cannam@167: cannam@167: static void os_destroy_thread(void) cannam@167: { cannam@167: _endthreadex(0); cannam@167: } cannam@167: cannam@167: /* windows does not have statically-initialized mutexes---fake a cannam@167: spinlock */ cannam@167: typedef volatile LONG os_static_mutex_t; cannam@167: #define OS_STATIC_MUTEX_INITIALIZER 0 cannam@167: static void os_static_mutex_lock(os_static_mutex_t *s) cannam@167: { cannam@167: while (InterlockedExchange(s, 1) == 1) { cannam@167: YieldProcessor(); cannam@167: Sleep(0); cannam@167: } cannam@167: } cannam@167: static void os_static_mutex_unlock(os_static_mutex_t *s) cannam@167: { cannam@167: LONG old = InterlockedExchange(s, 0); cannam@167: A(old == 1); cannam@167: } cannam@167: #else cannam@167: #error "No threading layer defined" cannam@167: #endif cannam@167: cannam@167: /************************************************************************/ cannam@167: cannam@167: /* Main code: */ cannam@167: struct worker { cannam@167: os_sem_t ready; cannam@167: os_sem_t done; cannam@167: struct work *w; cannam@167: struct worker *cdr; cannam@167: }; cannam@167: cannam@167: static struct worker *make_worker(void) cannam@167: { cannam@167: struct worker *q = (struct worker *)MALLOC(sizeof(*q), OTHER); cannam@167: os_sem_init(&q->ready); cannam@167: os_sem_init(&q->done); cannam@167: return q; cannam@167: } cannam@167: cannam@167: static void unmake_worker(struct worker *q) cannam@167: { cannam@167: os_sem_destroy(&q->done); cannam@167: os_sem_destroy(&q->ready); cannam@167: X(ifree)(q); cannam@167: } cannam@167: cannam@167: struct work { cannam@167: spawn_function proc; cannam@167: spawn_data d; cannam@167: struct worker *q; /* the worker responsible for performing this work */ cannam@167: }; cannam@167: cannam@167: static os_mutex_t queue_lock; cannam@167: static os_sem_t termination_semaphore; cannam@167: cannam@167: static struct worker *worker_queue; cannam@167: #define WITH_QUEUE_LOCK(what) \ cannam@167: { \ cannam@167: os_mutex_lock(&queue_lock); \ cannam@167: what; \ cannam@167: os_mutex_unlock(&queue_lock); \ cannam@167: } cannam@167: cannam@167: static FFTW_WORKER worker(void *arg) cannam@167: { cannam@167: struct worker *ego = (struct worker *)arg; cannam@167: struct work *w; cannam@167: cannam@167: for (;;) { cannam@167: /* wait until work becomes available */ cannam@167: os_sem_down(&ego->ready); cannam@167: cannam@167: w = ego->w; cannam@167: cannam@167: /* !w->proc ==> terminate worker */ cannam@167: if (!w->proc) break; cannam@167: cannam@167: /* do the work */ cannam@167: w->proc(&w->d); cannam@167: cannam@167: /* signal that work is done */ cannam@167: os_sem_up(&ego->done); cannam@167: } cannam@167: cannam@167: /* termination protocol */ cannam@167: os_sem_up(&termination_semaphore); cannam@167: cannam@167: os_destroy_thread(); cannam@167: /* UNREACHABLE */ cannam@167: return 0; cannam@167: } cannam@167: cannam@167: static void enqueue(struct worker *q) cannam@167: { cannam@167: WITH_QUEUE_LOCK({ cannam@167: q->cdr = worker_queue; cannam@167: worker_queue = q; cannam@167: }); cannam@167: } cannam@167: cannam@167: static struct worker *dequeue(void) cannam@167: { cannam@167: struct worker *q; cannam@167: cannam@167: WITH_QUEUE_LOCK({ cannam@167: q = worker_queue; cannam@167: if (q) cannam@167: worker_queue = q->cdr; cannam@167: }); cannam@167: cannam@167: if (!q) { cannam@167: /* no worker is available. Create one */ cannam@167: q = make_worker(); cannam@167: os_create_thread(worker, q); cannam@167: } cannam@167: cannam@167: return q; cannam@167: } cannam@167: cannam@167: cannam@167: static void kill_workforce(void) cannam@167: { cannam@167: struct work w; cannam@167: cannam@167: w.proc = 0; cannam@167: cannam@167: WITH_QUEUE_LOCK({ cannam@167: /* tell all workers that they must terminate. cannam@167: cannam@167: Because workers enqueue themselves before signaling the cannam@167: completion of the work, all workers belong to the worker queue cannam@167: if we get here. Also, all workers are waiting at cannam@167: os_sem_down(ready), so we can hold the queue lock without cannam@167: deadlocking */ cannam@167: while (worker_queue) { cannam@167: struct worker *q = worker_queue; cannam@167: worker_queue = q->cdr; cannam@167: q->w = &w; cannam@167: os_sem_up(&q->ready); cannam@167: os_sem_down(&termination_semaphore); cannam@167: unmake_worker(q); cannam@167: } cannam@167: }); cannam@167: } cannam@167: cannam@167: static os_static_mutex_t initialization_mutex = OS_STATIC_MUTEX_INITIALIZER; cannam@167: cannam@167: int X(ithreads_init)(void) cannam@167: { cannam@167: os_static_mutex_lock(&initialization_mutex); { cannam@167: os_mutex_init(&queue_lock); cannam@167: os_sem_init(&termination_semaphore); cannam@167: cannam@167: WITH_QUEUE_LOCK({ cannam@167: worker_queue = 0; cannam@167: }); cannam@167: } os_static_mutex_unlock(&initialization_mutex); cannam@167: cannam@167: return 0; /* no error */ cannam@167: } cannam@167: cannam@167: /* Distribute a loop from 0 to loopmax-1 over nthreads threads. cannam@167: proc(d) is called to execute a block of iterations from d->min cannam@167: to d->max-1. d->thr_num indicate the number of the thread cannam@167: that is executing proc (from 0 to nthreads-1), and d->data is cannam@167: the same as the data parameter passed to X(spawn_loop). cannam@167: cannam@167: This function returns only after all the threads have completed. */ cannam@167: void X(spawn_loop)(int loopmax, int nthr, spawn_function proc, void *data) cannam@167: { cannam@167: int block_size; cannam@167: struct work *r; cannam@167: int i; cannam@167: cannam@167: A(loopmax >= 0); cannam@167: A(nthr > 0); cannam@167: A(proc); cannam@167: cannam@167: if (!loopmax) return; cannam@167: cannam@167: /* Choose the block size and number of threads in order to (1) cannam@167: minimize the critical path and (2) use the fewest threads that cannam@167: achieve the same critical path (to minimize overhead). cannam@167: e.g. if loopmax is 5 and nthr is 4, we should use only 3 cannam@167: threads with block sizes of 2, 2, and 1. */ cannam@167: block_size = (loopmax + nthr - 1) / nthr; cannam@167: nthr = (loopmax + block_size - 1) / block_size; cannam@167: cannam@167: STACK_MALLOC(struct work *, r, sizeof(struct work) * nthr); cannam@167: cannam@167: /* distribute work: */ cannam@167: for (i = 0; i < nthr; ++i) { cannam@167: struct work *w = &r[i]; cannam@167: spawn_data *d = &w->d; cannam@167: cannam@167: d->max = (d->min = i * block_size) + block_size; cannam@167: if (d->max > loopmax) cannam@167: d->max = loopmax; cannam@167: d->thr_num = i; cannam@167: d->data = data; cannam@167: w->proc = proc; cannam@167: cannam@167: if (i == nthr - 1) { cannam@167: /* do the work ourselves */ cannam@167: proc(d); cannam@167: } else { cannam@167: /* assign a worker to W */ cannam@167: w->q = dequeue(); cannam@167: cannam@167: /* tell worker w->q to do it */ cannam@167: w->q->w = w; /* Dirac could have written this */ cannam@167: os_sem_up(&w->q->ready); cannam@167: } cannam@167: } cannam@167: cannam@167: for (i = 0; i < nthr - 1; ++i) { cannam@167: struct work *w = &r[i]; cannam@167: os_sem_down(&w->q->done); cannam@167: enqueue(w->q); cannam@167: } cannam@167: cannam@167: STACK_FREE(r); cannam@167: } cannam@167: cannam@167: void X(threads_cleanup)(void) cannam@167: { cannam@167: kill_workforce(); cannam@167: os_mutex_destroy(&queue_lock); cannam@167: os_sem_destroy(&termination_semaphore); cannam@167: } cannam@167: cannam@167: static os_static_mutex_t install_planner_hooks_mutex = OS_STATIC_MUTEX_INITIALIZER; cannam@167: static os_mutex_t planner_mutex; cannam@167: static int planner_hooks_installed = 0; cannam@167: cannam@167: static void lock_planner_mutex(void) cannam@167: { cannam@167: os_mutex_lock(&planner_mutex); cannam@167: } cannam@167: cannam@167: static void unlock_planner_mutex(void) cannam@167: { cannam@167: os_mutex_unlock(&planner_mutex); cannam@167: } cannam@167: cannam@167: void X(threads_register_planner_hooks)(void) cannam@167: { cannam@167: os_static_mutex_lock(&install_planner_hooks_mutex); { cannam@167: if (!planner_hooks_installed) { cannam@167: os_mutex_init(&planner_mutex); cannam@167: X(set_planner_hooks)(lock_planner_mutex, unlock_planner_mutex); cannam@167: planner_hooks_installed = 1; cannam@167: } cannam@167: } os_static_mutex_unlock(&install_planner_hooks_mutex); cannam@167: }