cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: #include "rdft/hc2hc.h" cannam@167: cannam@167: hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0; cannam@167: cannam@167: typedef struct { cannam@167: plan_rdft super; cannam@167: plan *cld; cannam@167: plan *cldw; cannam@167: INT r; cannam@167: } P; cannam@167: cannam@167: static void apply_dit(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: plan_rdft *cld; cannam@167: plan_hc2hc *cldw; cannam@167: cannam@167: cld = (plan_rdft *) ego->cld; cannam@167: cld->apply(ego->cld, I, O); cannam@167: cannam@167: cldw = (plan_hc2hc *) ego->cldw; cannam@167: cldw->apply(ego->cldw, O); cannam@167: } cannam@167: cannam@167: static void apply_dif(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: plan_rdft *cld; cannam@167: plan_hc2hc *cldw; cannam@167: cannam@167: cldw = (plan_hc2hc *) ego->cldw; cannam@167: cldw->apply(ego->cldw, I); cannam@167: cannam@167: cld = (plan_rdft *) ego->cld; cannam@167: cld->apply(ego->cld, I, O); cannam@167: } cannam@167: cannam@167: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_awake)(ego->cld, wakefulness); cannam@167: X(plan_awake)(ego->cldw, wakefulness); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(plan_destroy_internal)(ego->cldw); cannam@167: X(plan_destroy_internal)(ego->cld); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))", cannam@167: ego->super.apply == apply_dit ? "dit" : "dif", cannam@167: ego->r, ego->cldw, ego->cld); cannam@167: } cannam@167: cannam@167: static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr) cannam@167: { cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: INT r; cannam@167: cannam@167: return (1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: cannam@167: && (/* either the problem is R2HC, which is solved by DIT */ cannam@167: (p->kind[0] == R2HC) cannam@167: || cannam@167: /* or the problem is HC2R, in which case it is solved cannam@167: by DIF, which destroys the input */ cannam@167: (p->kind[0] == HC2R && cannam@167: (p->I == p->O || !NO_DESTROY_INPUTP(plnr)))) cannam@167: cannam@167: && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0) cannam@167: && p->sz->dims[0].n > r); cannam@167: } cannam@167: cannam@167: int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr) cannam@167: { cannam@167: const problem_rdft *p; cannam@167: cannam@167: if (!applicable0(ego, p_, plnr)) cannam@167: return 0; cannam@167: cannam@167: p = (const problem_rdft *) p_; cannam@167: cannam@167: return (0 cannam@167: || p->vecsz->rnk == 0 cannam@167: || !NO_VRECURSEP(plnr) cannam@167: ); cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const hc2hc_solver *ego = (const hc2hc_solver *) ego_; cannam@167: const problem_rdft *p; cannam@167: P *pln = 0; cannam@167: plan *cld = 0, *cldw = 0; cannam@167: INT n, r, m, v, ivs, ovs; cannam@167: iodim *d; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(rdft_solve), awake, print, destroy cannam@167: }; cannam@167: cannam@167: if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr)) cannam@167: return (plan *) 0; cannam@167: cannam@167: p = (const problem_rdft *) p_; cannam@167: d = p->sz->dims; cannam@167: n = d[0].n; cannam@167: r = X(choose_radix)(ego->r, n); cannam@167: m = n / r; cannam@167: cannam@167: X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs); cannam@167: cannam@167: switch (p->kind[0]) { cannam@167: case R2HC: cannam@167: cldw = ego->mkcldw(ego, cannam@167: R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2, cannam@167: p->O, plnr); cannam@167: if (!cldw) goto nada; cannam@167: cannam@167: cld = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft_d)( cannam@167: X(mktensor_1d)(m, r * d[0].is, d[0].os), cannam@167: X(mktensor_2d)(r, d[0].is, m * d[0].os, cannam@167: v, ivs, ovs), cannam@167: p->I, p->O, p->kind) cannam@167: ); cannam@167: if (!cld) goto nada; cannam@167: cannam@167: pln = MKPLAN_RDFT(P, &padt, apply_dit); cannam@167: break; cannam@167: cannam@167: case HC2R: cannam@167: cldw = ego->mkcldw(ego, cannam@167: HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2, cannam@167: p->I, plnr); cannam@167: if (!cldw) goto nada; cannam@167: cannam@167: cld = X(mkplan_d)(plnr, cannam@167: X(mkproblem_rdft_d)( cannam@167: X(mktensor_1d)(m, d[0].is, r * d[0].os), cannam@167: X(mktensor_2d)(r, m * d[0].is, d[0].os, cannam@167: v, ivs, ovs), cannam@167: p->I, p->O, p->kind) cannam@167: ); cannam@167: if (!cld) goto nada; cannam@167: cannam@167: pln = MKPLAN_RDFT(P, &padt, apply_dif); cannam@167: break; cannam@167: cannam@167: default: cannam@167: A(0); cannam@167: } cannam@167: cannam@167: pln->cld = cld; cannam@167: pln->cldw = cldw; cannam@167: pln->r = r; cannam@167: X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops); cannam@167: cannam@167: /* inherit could_prune_now_p attribute from cldw */ cannam@167: pln->super.super.could_prune_now_p = cldw->could_prune_now_p; cannam@167: cannam@167: return &(pln->super.super); cannam@167: cannam@167: nada: cannam@167: X(plan_destroy_internal)(cldw); cannam@167: X(plan_destroy_internal)(cld); cannam@167: return (plan *) 0; cannam@167: } cannam@167: cannam@167: hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@167: hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt); cannam@167: slv->r = r; cannam@167: slv->mkcldw = mkcldw; cannam@167: return slv; cannam@167: } cannam@167: cannam@167: plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply) cannam@167: { cannam@167: plan_hc2hc *ego; cannam@167: cannam@167: ego = (plan_hc2hc *) X(mkplan)(size, adt); cannam@167: ego->apply = apply; cannam@167: cannam@167: return &(ego->super); cannam@167: }