cannam@167: /* cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: */ cannam@167: cannam@167: cannam@167: /* direct RDFT solver, using r2c codelets */ cannam@167: cannam@167: #include "rdft/rdft.h" cannam@167: cannam@167: typedef struct { cannam@167: solver super; cannam@167: const kr2c_desc *desc; cannam@167: kr2c k; cannam@167: int bufferedp; cannam@167: } S; cannam@167: cannam@167: typedef struct { cannam@167: plan_rdft super; cannam@167: cannam@167: stride rs, csr, csi; cannam@167: stride brs, bcsr, bcsi; cannam@167: INT n, vl, rs0, ivs, ovs, ioffset, bioffset; cannam@167: kr2c k; cannam@167: const S *slv; cannam@167: } P; cannam@167: cannam@167: /************************************************************* cannam@167: Nonbuffered code cannam@167: *************************************************************/ cannam@167: static void apply_r2hc(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: ASSERT_ALIGNED_DOUBLE; cannam@167: ego->k(I, I + ego->rs0, O, O + ego->ioffset, cannam@167: ego->rs, ego->csr, ego->csi, cannam@167: ego->vl, ego->ivs, ego->ovs); cannam@167: } cannam@167: cannam@167: static void apply_hc2r(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: ASSERT_ALIGNED_DOUBLE; cannam@167: ego->k(O, O + ego->rs0, I, I + ego->ioffset, cannam@167: ego->rs, ego->csr, ego->csi, cannam@167: ego->vl, ego->ivs, ego->ovs); cannam@167: } cannam@167: cannam@167: /************************************************************* cannam@167: Buffered code cannam@167: *************************************************************/ cannam@167: /* should not be 2^k to avoid associativity conflicts */ cannam@167: static INT compute_batchsize(INT radix) cannam@167: { cannam@167: /* round up to multiple of 4 */ cannam@167: radix += 3; cannam@167: radix &= -4; cannam@167: cannam@167: return (radix + 2); cannam@167: } cannam@167: cannam@167: static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz) cannam@167: { cannam@167: X(cpy2d_ci)(I, buf, cannam@167: ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1), cannam@167: batchsz, ego->ivs, 1, 1); cannam@167: cannam@167: if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) { cannam@167: /* transform directly to output */ cannam@167: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@167: O, O + ego->ioffset, cannam@167: ego->brs, ego->csr, ego->csi, cannam@167: batchsz, 1, ego->ovs); cannam@167: } else { cannam@167: /* transform to buffer and copy back */ cannam@167: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@167: buf, buf + ego->bioffset, cannam@167: ego->brs, ego->bcsr, ego->bcsi, cannam@167: batchsz, 1, 1); cannam@167: X(cpy2d_co)(buf, O, cannam@167: ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1), cannam@167: batchsz, 1, ego->ovs, 1); cannam@167: } cannam@167: } cannam@167: cannam@167: static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz) cannam@167: { cannam@167: if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) { cannam@167: /* transform directly from input */ cannam@167: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@167: I, I + ego->ioffset, cannam@167: ego->brs, ego->csr, ego->csi, cannam@167: batchsz, ego->ivs, 1); cannam@167: } else { cannam@167: /* copy into buffer and transform in place */ cannam@167: X(cpy2d_ci)(I, buf, cannam@167: ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1), cannam@167: batchsz, ego->ivs, 1, 1); cannam@167: ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), cannam@167: buf, buf + ego->bioffset, cannam@167: ego->brs, ego->bcsr, ego->bcsi, cannam@167: batchsz, 1, 1); cannam@167: } cannam@167: X(cpy2d_co)(buf, O, cannam@167: ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0, cannam@167: batchsz, 1, ego->ovs, 1); cannam@167: } cannam@167: cannam@167: static void iterate(const P *ego, R *I, R *O, cannam@167: void (*dobatch)(const P *ego, R *I, R *O, cannam@167: R *buf, INT batchsz)) cannam@167: { cannam@167: R *buf; cannam@167: INT vl = ego->vl; cannam@167: INT n = ego->n; cannam@167: INT i; cannam@167: INT batchsz = compute_batchsize(n); cannam@167: size_t bufsz = n * batchsz * sizeof(R); cannam@167: cannam@167: BUF_ALLOC(R *, buf, bufsz); cannam@167: cannam@167: for (i = 0; i < vl - batchsz; i += batchsz) { cannam@167: dobatch(ego, I, O, buf, batchsz); cannam@167: I += batchsz * ego->ivs; cannam@167: O += batchsz * ego->ovs; cannam@167: } cannam@167: dobatch(ego, I, O, buf, vl - i); cannam@167: cannam@167: BUF_FREE(buf, bufsz); cannam@167: } cannam@167: cannam@167: static void apply_buf_r2hc(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: iterate((const P *) ego_, I, O, dobatch_r2hc); cannam@167: } cannam@167: cannam@167: static void apply_buf_hc2r(const plan *ego_, R *I, R *O) cannam@167: { cannam@167: iterate((const P *) ego_, I, O, dobatch_hc2r); cannam@167: } cannam@167: cannam@167: static void destroy(plan *ego_) cannam@167: { cannam@167: P *ego = (P *) ego_; cannam@167: X(stride_destroy)(ego->rs); cannam@167: X(stride_destroy)(ego->csr); cannam@167: X(stride_destroy)(ego->csi); cannam@167: X(stride_destroy)(ego->brs); cannam@167: X(stride_destroy)(ego->bcsr); cannam@167: X(stride_destroy)(ego->bcsi); cannam@167: } cannam@167: cannam@167: static void print(const plan *ego_, printer *p) cannam@167: { cannam@167: const P *ego = (const P *) ego_; cannam@167: const S *s = ego->slv; cannam@167: cannam@167: if (ego->slv->bufferedp) cannam@167: p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", cannam@167: X(rdft_kind_str)(s->desc->genus->kind), cannam@167: /* hack */ WS(ego->bcsr, 1), ego->n, cannam@167: ego->vl, s->desc->nam); cannam@167: cannam@167: else cannam@167: p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", cannam@167: X(rdft_kind_str)(s->desc->genus->kind), ego->n, cannam@167: ego->vl, s->desc->nam); cannam@167: } cannam@167: cannam@167: static INT ioffset(rdft_kind kind, INT sz, INT s) cannam@167: { cannam@167: return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); cannam@167: } cannam@167: cannam@167: static int applicable(const solver *ego_, const problem *p_) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const kr2c_desc *desc = ego->desc; cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: INT vl, ivs, ovs; cannam@167: cannam@167: return ( cannam@167: 1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: && p->sz->dims[0].n == desc->n cannam@167: && p->kind[0] == desc->genus->kind cannam@167: cannam@167: /* check strides etc */ cannam@167: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@167: cannam@167: && (0 cannam@167: /* can operate out-of-place */ cannam@167: || p->I != p->O cannam@167: cannam@167: /* computing one transform */ cannam@167: || vl == 1 cannam@167: cannam@167: /* can operate in-place as long as strides are the same */ cannam@167: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@167: ) cannam@167: ); cannam@167: } cannam@167: cannam@167: static int applicable_buf(const solver *ego_, const problem *p_) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: const kr2c_desc *desc = ego->desc; cannam@167: const problem_rdft *p = (const problem_rdft *) p_; cannam@167: INT vl, ivs, ovs, batchsz; cannam@167: cannam@167: return ( cannam@167: 1 cannam@167: && p->sz->rnk == 1 cannam@167: && p->vecsz->rnk <= 1 cannam@167: && p->sz->dims[0].n == desc->n cannam@167: && p->kind[0] == desc->genus->kind cannam@167: cannam@167: /* check strides etc */ cannam@167: && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) cannam@167: cannam@167: && (batchsz = compute_batchsize(desc->n), 1) cannam@167: cannam@167: && (0 cannam@167: /* can operate out-of-place */ cannam@167: || p->I != p->O cannam@167: cannam@167: /* can operate in-place as long as strides are the same */ cannam@167: || X(tensor_inplace_strides2)(p->sz, p->vecsz) cannam@167: cannam@167: /* can do it if the problem fits in the buffer, no matter cannam@167: what the strides are */ cannam@167: || vl <= batchsz cannam@167: ) cannam@167: ); cannam@167: } cannam@167: cannam@167: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@167: { cannam@167: const S *ego = (const S *) ego_; cannam@167: P *pln; cannam@167: const problem_rdft *p; cannam@167: iodim *d; cannam@167: INT rs, cs, b, n; cannam@167: cannam@167: static const plan_adt padt = { cannam@167: X(rdft_solve), X(null_awake), print, destroy cannam@167: }; cannam@167: cannam@167: UNUSED(plnr); cannam@167: cannam@167: if (ego->bufferedp) { cannam@167: if (!applicable_buf(ego_, p_)) cannam@167: return (plan *)0; cannam@167: } else { cannam@167: if (!applicable(ego_, p_)) cannam@167: return (plan *)0; cannam@167: } cannam@167: cannam@167: p = (const problem_rdft *) p_; cannam@167: cannam@167: if (R2HC_KINDP(p->kind[0])) { cannam@167: rs = p->sz->dims[0].is; cs = p->sz->dims[0].os; cannam@167: pln = MKPLAN_RDFT(P, &padt, cannam@167: ego->bufferedp ? apply_buf_r2hc : apply_r2hc); cannam@167: } else { cannam@167: rs = p->sz->dims[0].os; cs = p->sz->dims[0].is; cannam@167: pln = MKPLAN_RDFT(P, &padt, cannam@167: ego->bufferedp ? apply_buf_hc2r : apply_hc2r); cannam@167: } cannam@167: cannam@167: d = p->sz->dims; cannam@167: n = d[0].n; cannam@167: cannam@167: pln->k = ego->k; cannam@167: pln->n = n; cannam@167: cannam@167: pln->rs0 = rs; cannam@167: pln->rs = X(mkstride)(n, 2 * rs); cannam@167: pln->csr = X(mkstride)(n, cs); cannam@167: pln->csi = X(mkstride)(n, -cs); cannam@167: pln->ioffset = ioffset(p->kind[0], n, cs); cannam@167: cannam@167: b = compute_batchsize(n); cannam@167: pln->brs = X(mkstride)(n, 2 * b); cannam@167: pln->bcsr = X(mkstride)(n, b); cannam@167: pln->bcsi = X(mkstride)(n, -b); cannam@167: pln->bioffset = ioffset(p->kind[0], n, b); cannam@167: cannam@167: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@167: cannam@167: pln->slv = ego; cannam@167: X(ops_zero)(&pln->super.super.ops); cannam@167: cannam@167: X(ops_madd2)(pln->vl / ego->desc->genus->vl, cannam@167: &ego->desc->ops, cannam@167: &pln->super.super.ops); cannam@167: cannam@167: if (ego->bufferedp) cannam@167: pln->super.super.ops.other += 2 * n * pln->vl; cannam@167: cannam@167: pln->super.super.could_prune_now_p = !ego->bufferedp; cannam@167: cannam@167: return &(pln->super.super); cannam@167: } cannam@167: cannam@167: /* constructor */ cannam@167: static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp) cannam@167: { cannam@167: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@167: S *slv = MKSOLVER(S, &sadt); cannam@167: slv->k = k; cannam@167: slv->desc = desc; cannam@167: slv->bufferedp = bufferedp; cannam@167: return &(slv->super); cannam@167: } cannam@167: cannam@167: solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc) cannam@167: { cannam@167: return mksolver(k, desc, 0); cannam@167: } cannam@167: cannam@167: solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc) cannam@167: { cannam@167: return mksolver(k, desc, 1); cannam@167: }