cannam@127: (* cannam@127: * Copyright (c) 1997-1999 Massachusetts Institute of Technology cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: *) cannam@127: cannam@127: (* abstraction layer for complex operations *) cannam@127: open Littlesimp cannam@127: open Expr cannam@127: cannam@127: (* type of complex expressions *) cannam@127: type expr = CE of Expr.expr * Expr.expr cannam@127: cannam@127: let two = CE (makeNum Number.two, makeNum Number.zero) cannam@127: let one = CE (makeNum Number.one, makeNum Number.zero) cannam@127: let i = CE (makeNum Number.zero, makeNum Number.one) cannam@127: let zero = CE (makeNum Number.zero, makeNum Number.zero) cannam@127: let make (r, i) = CE (r, i) cannam@127: cannam@127: let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b) cannam@127: cannam@127: let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), cannam@127: makeNum Number.zero) cannam@127: cannam@127: let inverse_int_sqrt n = cannam@127: CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))), cannam@127: makeNum Number.zero) cannam@127: let int_sqrt n = cannam@127: CE (makeNum (Number.sqrt (Number.of_int n)), cannam@127: makeNum Number.zero) cannam@127: cannam@127: let nan x = CE (NaN x, makeNum Number.zero) cannam@127: cannam@127: let half = inverse_int 2 cannam@127: cannam@127: let times3x3 (CE (a, b)) (CE (c, d)) = cannam@127: CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]); cannam@127: makeTimes (b, makePlus [c; makeUminus (d)])], cannam@127: makePlus [makeTimes (a, makePlus [c; d]); cannam@127: makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))]) cannam@127: cannam@127: let times (CE (a, b)) (CE (c, d)) = cannam@127: if not !Magic.threemult then cannam@127: CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], cannam@127: makePlus [makeTimes (a, d); makeTimes (b, c)]) cannam@127: else if is_constant c && is_constant d then cannam@127: times3x3 (CE (a, b)) (CE (c, d)) cannam@127: else (* hope a and b are constant expressions *) cannam@127: times3x3 (CE (c, d)) (CE (a, b)) cannam@127: cannam@127: let ctimes (CE (a, _)) (CE (c, _)) = cannam@127: CE (CTimes (a, c), makeNum Number.zero) cannam@127: cannam@127: let ctimesj (CE (a, _)) (CE (c, _)) = cannam@127: CE (CTimesJ (a, c), makeNum Number.zero) cannam@127: cannam@127: (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) cannam@127: let exp n i = cannam@127: let (c, s) = Number.cexp n i cannam@127: in CE (makeNum c, makeNum s) cannam@127: cannam@127: (* various trig functions evaluated at (2*pi*i/n * m) *) cannam@127: let sec n m = cannam@127: let (c, s) = Number.cexp n m cannam@127: in CE (makeNum (Number.div Number.one c), makeNum Number.zero) cannam@127: let csc n m = cannam@127: let (c, s) = Number.cexp n m cannam@127: in CE (makeNum (Number.div Number.one s), makeNum Number.zero) cannam@127: let tan n m = cannam@127: let (c, s) = Number.cexp n m cannam@127: in CE (makeNum (Number.div s c), makeNum Number.zero) cannam@127: let cot n m = cannam@127: let (c, s) = Number.cexp n m cannam@127: in CE (makeNum (Number.div c s), makeNum Number.zero) cannam@127: cannam@127: (* complex sum *) cannam@127: let plus a = cannam@127: let rec unzip_complex = function cannam@127: [] -> ([], []) cannam@127: | ((CE (a, b)) :: s) -> cannam@127: let (r,i) = unzip_complex s cannam@127: in cannam@127: (a::r), (b::i) in cannam@127: let (c, d) = unzip_complex a in cannam@127: CE (makePlus c, makePlus d) cannam@127: cannam@127: (* extract real/imaginary *) cannam@127: let real (CE (a, b)) = CE (a, makeNum Number.zero) cannam@127: let imag (CE (a, b)) = CE (b, makeNum Number.zero) cannam@127: let iimag (CE (a, b)) = CE (makeNum Number.zero, b) cannam@127: let conj (CE (a, b)) = CE (a, makeUminus b) cannam@127: cannam@127: cannam@127: (* abstraction of sum_{i=0}^{n-1} *) cannam@127: let sigma a b f = plus (List.map f (Util.interval a b)) cannam@127: cannam@127: (* store and assignment operations *) cannam@127: let store_real v (CE (a, b)) = Expr.Store (v, a) cannam@127: let store_imag v (CE (a, b)) = Expr.Store (v, b) cannam@127: let store (vr, vi) x = (store_real vr x, store_imag vi x) cannam@127: cannam@127: let assign_real v (CE (a, b)) = Expr.Assign (v, a) cannam@127: let assign_imag v (CE (a, b)) = Expr.Assign (v, b) cannam@127: let assign (vr, vi) x = (assign_real vr x, assign_imag vi x) cannam@127: cannam@127: cannam@127: (************************ cannam@127: shortcuts cannam@127: ************************) cannam@127: let (@*) = times cannam@127: let (@+) a b = plus [a; b] cannam@127: let (@-) a b = plus [a; uminus b] cannam@127: cannam@127: (* type of complex signals *) cannam@127: type signal = int -> expr cannam@127: cannam@127: (* make a finite signal infinite *) cannam@127: let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero cannam@127: cannam@127: let hermitian n a = cannam@127: Util.array n (fun i -> cannam@127: if (i = 0) then real (a 0) cannam@127: else if (i < n - i) then (a i) cannam@127: else if (i > n - i) then conj (a (n - i)) cannam@127: else real (a i)) cannam@127: cannam@127: let antihermitian n a = cannam@127: Util.array n (fun i -> cannam@127: if (i = 0) then iimag (a 0) cannam@127: else if (i < n - i) then (a i) cannam@127: else if (i > n - i) then uminus (conj (a (n - i))) cannam@127: else iimag (a i))