cannam@95: /* cannam@95: * Copyright (c) 2003, 2007-11 Matteo Frigo cannam@95: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology cannam@95: * cannam@95: * This program is free software; you can redistribute it and/or modify cannam@95: * it under the terms of the GNU General Public License as published by cannam@95: * the Free Software Foundation; either version 2 of the License, or cannam@95: * (at your option) any later version. cannam@95: * cannam@95: * This program is distributed in the hope that it will be useful, cannam@95: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@95: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@95: * GNU General Public License for more details. cannam@95: * cannam@95: * You should have received a copy of the GNU General Public License cannam@95: * along with this program; if not, write to the Free Software cannam@95: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@95: * cannam@95: */ cannam@95: cannam@95: cannam@95: /* Do an R{E,O}DFT11 problem via an R2HC problem, with some cannam@95: pre/post-processing ala FFTPACK. Use a trick from: cannam@95: cannam@95: S. C. Chan and K. L. Ho, "Direct methods for computing discrete cannam@95: sinusoidal transforms," IEE Proceedings F 137 (6), 433--442 (1990). cannam@95: cannam@95: to re-express as an REDFT01 (DCT-III) problem. cannam@95: cannam@95: NOTE: We no longer use this algorithm, because it turns out to suffer cannam@95: a catastrophic loss of accuracy for certain inputs, apparently because cannam@95: its post-processing multiplies the output by a cosine. Near the zero cannam@95: of the cosine, the REDFT01 must produce a near-singular output. cannam@95: */ cannam@95: cannam@95: #include "reodft.h" cannam@95: cannam@95: typedef struct { cannam@95: solver super; cannam@95: } S; cannam@95: cannam@95: typedef struct { cannam@95: plan_rdft super; cannam@95: plan *cld; cannam@95: twid *td, *td2; cannam@95: INT is, os; cannam@95: INT n; cannam@95: INT vl; cannam@95: INT ivs, ovs; cannam@95: rdft_kind kind; cannam@95: } P; cannam@95: cannam@95: static void apply_re11(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is, os = ego->os; cannam@95: INT i, n = ego->n; cannam@95: INT iv, vl = ego->vl; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs; cannam@95: R *W; cannam@95: R *buf; cannam@95: E cur; cannam@95: cannam@95: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@95: cannam@95: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@95: /* I wish that this didn't require an extra pass. */ cannam@95: /* FIXME: use recursive/cascade summation for better stability? */ cannam@95: buf[n - 1] = cur = K(2.0) * I[is * (n - 1)]; cannam@95: for (i = n - 1; i > 0; --i) { cannam@95: E curnew; cannam@95: buf[(i - 1)] = curnew = K(2.0) * I[is * (i - 1)] - cur; cannam@95: cur = curnew; cannam@95: } cannam@95: cannam@95: W = ego->td->W; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b, apb, amb, wa, wb; cannam@95: a = buf[i]; cannam@95: b = buf[n - i]; cannam@95: apb = a + b; cannam@95: amb = a - b; cannam@95: wa = W[2*i]; cannam@95: wb = W[2*i + 1]; cannam@95: buf[i] = wa * amb + wb * apb; cannam@95: buf[n - i] = wa * apb - wb * amb; cannam@95: } cannam@95: if (i == n - i) { cannam@95: buf[i] = K(2.0) * buf[i] * W[2*i]; cannam@95: } cannam@95: cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: cld->apply((plan *) cld, buf, buf); cannam@95: } cannam@95: cannam@95: W = ego->td2->W; cannam@95: O[0] = W[0] * buf[0]; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b; cannam@95: INT k; cannam@95: a = buf[i]; cannam@95: b = buf[n - i]; cannam@95: k = i + i; cannam@95: O[os * (k - 1)] = W[k - 1] * (a - b); cannam@95: O[os * k] = W[k] * (a + b); cannam@95: } cannam@95: if (i == n - i) { cannam@95: O[os * (n - 1)] = W[n - 1] * buf[i]; cannam@95: } cannam@95: } cannam@95: cannam@95: X(ifree)(buf); cannam@95: } cannam@95: cannam@95: /* like for rodft01, rodft11 is obtained from redft11 by cannam@95: reversing the input and flipping the sign of every other output. */ cannam@95: static void apply_ro11(const plan *ego_, R *I, R *O) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: INT is = ego->is, os = ego->os; cannam@95: INT i, n = ego->n; cannam@95: INT iv, vl = ego->vl; cannam@95: INT ivs = ego->ivs, ovs = ego->ovs; cannam@95: R *W; cannam@95: R *buf; cannam@95: E cur; cannam@95: cannam@95: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@95: cannam@95: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@95: /* I wish that this didn't require an extra pass. */ cannam@95: /* FIXME: use recursive/cascade summation for better stability? */ cannam@95: buf[n - 1] = cur = K(2.0) * I[0]; cannam@95: for (i = n - 1; i > 0; --i) { cannam@95: E curnew; cannam@95: buf[(i - 1)] = curnew = K(2.0) * I[is * (n - i)] - cur; cannam@95: cur = curnew; cannam@95: } cannam@95: cannam@95: W = ego->td->W; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b, apb, amb, wa, wb; cannam@95: a = buf[i]; cannam@95: b = buf[n - i]; cannam@95: apb = a + b; cannam@95: amb = a - b; cannam@95: wa = W[2*i]; cannam@95: wb = W[2*i + 1]; cannam@95: buf[i] = wa * amb + wb * apb; cannam@95: buf[n - i] = wa * apb - wb * amb; cannam@95: } cannam@95: if (i == n - i) { cannam@95: buf[i] = K(2.0) * buf[i] * W[2*i]; cannam@95: } cannam@95: cannam@95: { cannam@95: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@95: cld->apply((plan *) cld, buf, buf); cannam@95: } cannam@95: cannam@95: W = ego->td2->W; cannam@95: O[0] = W[0] * buf[0]; cannam@95: for (i = 1; i < n - i; ++i) { cannam@95: E a, b; cannam@95: INT k; cannam@95: a = buf[i]; cannam@95: b = buf[n - i]; cannam@95: k = i + i; cannam@95: O[os * (k - 1)] = W[k - 1] * (b - a); cannam@95: O[os * k] = W[k] * (a + b); cannam@95: } cannam@95: if (i == n - i) { cannam@95: O[os * (n - 1)] = -W[n - 1] * buf[i]; cannam@95: } cannam@95: } cannam@95: cannam@95: X(ifree)(buf); cannam@95: } cannam@95: cannam@95: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: static const tw_instr reodft010e_tw[] = { cannam@95: { TW_COS, 0, 1 }, cannam@95: { TW_SIN, 0, 1 }, cannam@95: { TW_NEXT, 1, 0 } cannam@95: }; cannam@95: static const tw_instr reodft11e_tw[] = { cannam@95: { TW_COS, 1, 1 }, cannam@95: { TW_NEXT, 2, 0 } cannam@95: }; cannam@95: cannam@95: X(plan_awake)(ego->cld, wakefulness); cannam@95: cannam@95: X(twiddle_awake)(wakefulness, cannam@95: &ego->td, reodft010e_tw, 4*ego->n, 1, ego->n/2+1); cannam@95: X(twiddle_awake)(wakefulness, cannam@95: &ego->td2, reodft11e_tw, 8*ego->n, 1, ego->n * 2); cannam@95: } cannam@95: cannam@95: static void destroy(plan *ego_) cannam@95: { cannam@95: P *ego = (P *) ego_; cannam@95: X(plan_destroy_internal)(ego->cld); cannam@95: } cannam@95: cannam@95: static void print(const plan *ego_, printer *p) cannam@95: { cannam@95: const P *ego = (const P *) ego_; cannam@95: p->print(p, "(%se-r2hc-%D%v%(%p%))", cannam@95: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); cannam@95: } cannam@95: cannam@95: static int applicable0(const solver *ego_, const problem *p_) cannam@95: { cannam@95: const problem_rdft *p = (const problem_rdft *) p_; cannam@95: cannam@95: UNUSED(ego_); cannam@95: cannam@95: return (1 cannam@95: && p->sz->rnk == 1 cannam@95: && p->vecsz->rnk <= 1 cannam@95: && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11) cannam@95: ); cannam@95: } cannam@95: cannam@95: static int applicable(const solver *ego, const problem *p, const planner *plnr) cannam@95: { cannam@95: return (!NO_SLOWP(plnr) && applicable0(ego, p)); cannam@95: } cannam@95: cannam@95: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@95: { cannam@95: P *pln; cannam@95: const problem_rdft *p; cannam@95: plan *cld; cannam@95: R *buf; cannam@95: INT n; cannam@95: opcnt ops; cannam@95: cannam@95: static const plan_adt padt = { cannam@95: X(rdft_solve), awake, print, destroy cannam@95: }; cannam@95: cannam@95: if (!applicable(ego_, p_, plnr)) cannam@95: return (plan *)0; cannam@95: cannam@95: p = (const problem_rdft *) p_; cannam@95: cannam@95: n = p->sz->dims[0].n; cannam@95: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@95: cannam@95: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), cannam@95: X(mktensor_0d)(), cannam@95: buf, buf, R2HC)); cannam@95: X(ifree)(buf); cannam@95: if (!cld) cannam@95: return (plan *)0; cannam@95: cannam@95: pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11); cannam@95: pln->n = n; cannam@95: pln->is = p->sz->dims[0].is; cannam@95: pln->os = p->sz->dims[0].os; cannam@95: pln->cld = cld; cannam@95: pln->td = pln->td2 = 0; cannam@95: pln->kind = p->kind[0]; cannam@95: cannam@95: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@95: cannam@95: X(ops_zero)(&ops); cannam@95: ops.other = 5 + (n-1) * 2 + (n-1)/2 * 12 + (1 - n % 2) * 6; cannam@95: ops.add = (n - 1) * 1 + (n-1)/2 * 6; cannam@95: ops.mul = 2 + (n-1) * 1 + (n-1)/2 * 6 + (1 - n % 2) * 3; cannam@95: cannam@95: X(ops_zero)(&pln->super.super.ops); cannam@95: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); cannam@95: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); cannam@95: cannam@95: return &(pln->super.super); cannam@95: } cannam@95: cannam@95: /* constructor */ cannam@95: static solver *mksolver(void) cannam@95: { cannam@95: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@95: S *slv = MKSOLVER(S, &sadt); cannam@95: return &(slv->super); cannam@95: } cannam@95: cannam@95: void X(reodft11e_r2hc_register)(planner *p) cannam@95: { cannam@95: REGISTER_SOLVER(p, mksolver()); cannam@95: }