cannam@148: // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors cannam@148: // Licensed under the MIT License: cannam@148: // cannam@148: // Permission is hereby granted, free of charge, to any person obtaining a copy cannam@148: // of this software and associated documentation files (the "Software"), to deal cannam@148: // in the Software without restriction, including without limitation the rights cannam@148: // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cannam@148: // copies of the Software, and to permit persons to whom the Software is cannam@148: // furnished to do so, subject to the following conditions: cannam@148: // cannam@148: // The above copyright notice and this permission notice shall be included in cannam@148: // all copies or substantial portions of the Software. cannam@148: // cannam@148: // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR cannam@148: // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, cannam@148: // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE cannam@148: // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER cannam@148: // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, cannam@148: // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN cannam@148: // THE SOFTWARE. cannam@148: cannam@148: #ifndef KJ_ARRAY_H_ cannam@148: #define KJ_ARRAY_H_ cannam@148: cannam@148: #if defined(__GNUC__) && !KJ_HEADER_WARNINGS cannam@148: #pragma GCC system_header cannam@148: #endif cannam@148: cannam@148: #include "common.h" cannam@148: #include cannam@148: #include cannam@148: cannam@148: namespace kj { cannam@148: cannam@148: // ======================================================================================= cannam@148: // ArrayDisposer -- Implementation details. cannam@148: cannam@148: class ArrayDisposer { cannam@148: // Much like Disposer from memory.h. cannam@148: cannam@148: protected: cannam@148: // Do not declare a destructor, as doing so will force a global initializer for cannam@148: // HeapArrayDisposer::instance. cannam@148: cannam@148: virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, cannam@148: size_t capacity, void (*destroyElement)(void*)) const = 0; cannam@148: // Disposes of the array. `destroyElement` invokes the destructor of each element, or is nullptr cannam@148: // if the elements have trivial destructors. `capacity` is the amount of space that was cannam@148: // allocated while `elementCount` is the number of elements that were actually constructed; cannam@148: // these are always the same number for Array but may be different when using ArrayBuilder. cannam@148: cannam@148: public: cannam@148: cannam@148: template cannam@148: void dispose(T* firstElement, size_t elementCount, size_t capacity) const; cannam@148: // Helper wrapper around disposeImpl(). cannam@148: // cannam@148: // Callers must not call dispose() on the same array twice, even if the first call throws cannam@148: // an exception. cannam@148: cannam@148: private: cannam@148: template cannam@148: struct Dispose_; cannam@148: }; cannam@148: cannam@148: class ExceptionSafeArrayUtil { cannam@148: // Utility class that assists in constructing or destroying elements of an array, where the cannam@148: // constructor or destructor could throw exceptions. In case of an exception, cannam@148: // ExceptionSafeArrayUtil's destructor will call destructors on all elements that have been cannam@148: // constructed but not destroyed. Remember that destructors that throw exceptions are required cannam@148: // to use UnwindDetector to detect unwind and avoid exceptions in this case. Therefore, no more cannam@148: // than one exception will be thrown (and the program will not terminate). cannam@148: cannam@148: public: cannam@148: inline ExceptionSafeArrayUtil(void* ptr, size_t elementSize, size_t constructedElementCount, cannam@148: void (*destroyElement)(void*)) cannam@148: : pos(reinterpret_cast(ptr) + elementSize * constructedElementCount), cannam@148: elementSize(elementSize), constructedElementCount(constructedElementCount), cannam@148: destroyElement(destroyElement) {} cannam@148: KJ_DISALLOW_COPY(ExceptionSafeArrayUtil); cannam@148: cannam@148: inline ~ExceptionSafeArrayUtil() noexcept(false) { cannam@148: if (constructedElementCount > 0) destroyAll(); cannam@148: } cannam@148: cannam@148: void construct(size_t count, void (*constructElement)(void*)); cannam@148: // Construct the given number of elements. cannam@148: cannam@148: void destroyAll(); cannam@148: // Destroy all elements. Call this immediately before ExceptionSafeArrayUtil goes out-of-scope cannam@148: // to ensure that one element throwing an exception does not prevent the others from being cannam@148: // destroyed. cannam@148: cannam@148: void release() { constructedElementCount = 0; } cannam@148: // Prevent ExceptionSafeArrayUtil's destructor from destroying the constructed elements. cannam@148: // Call this after you've successfully finished constructing. cannam@148: cannam@148: private: cannam@148: byte* pos; cannam@148: size_t elementSize; cannam@148: size_t constructedElementCount; cannam@148: void (*destroyElement)(void*); cannam@148: }; cannam@148: cannam@148: class DestructorOnlyArrayDisposer: public ArrayDisposer { cannam@148: public: cannam@148: static const DestructorOnlyArrayDisposer instance; cannam@148: cannam@148: void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, cannam@148: size_t capacity, void (*destroyElement)(void*)) const override; cannam@148: }; cannam@148: cannam@148: class NullArrayDisposer: public ArrayDisposer { cannam@148: // An ArrayDisposer that does nothing. Can be used to construct a fake Arrays that doesn't cannam@148: // actually own its content. cannam@148: cannam@148: public: cannam@148: static const NullArrayDisposer instance; cannam@148: cannam@148: void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, cannam@148: size_t capacity, void (*destroyElement)(void*)) const override; cannam@148: }; cannam@148: cannam@148: // ======================================================================================= cannam@148: // Array cannam@148: cannam@148: template cannam@148: class Array { cannam@148: // An owned array which will automatically be disposed of (using an ArrayDisposer) in the cannam@148: // destructor. Can be moved, but not copied. Much like Own, but for arrays rather than cannam@148: // single objects. cannam@148: cannam@148: public: cannam@148: inline Array(): ptr(nullptr), size_(0), disposer(nullptr) {} cannam@148: inline Array(decltype(nullptr)): ptr(nullptr), size_(0), disposer(nullptr) {} cannam@148: inline Array(Array&& other) noexcept cannam@148: : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { cannam@148: other.ptr = nullptr; cannam@148: other.size_ = 0; cannam@148: } cannam@148: inline Array(Array>&& other) noexcept cannam@148: : ptr(other.ptr), size_(other.size_), disposer(other.disposer) { cannam@148: other.ptr = nullptr; cannam@148: other.size_ = 0; cannam@148: } cannam@148: inline Array(T* firstElement, size_t size, const ArrayDisposer& disposer) cannam@148: : ptr(firstElement), size_(size), disposer(&disposer) {} cannam@148: cannam@148: KJ_DISALLOW_COPY(Array); cannam@148: inline ~Array() noexcept { dispose(); } cannam@148: cannam@148: inline operator ArrayPtr() { cannam@148: return ArrayPtr(ptr, size_); cannam@148: } cannam@148: inline operator ArrayPtr() const { cannam@148: return ArrayPtr(ptr, size_); cannam@148: } cannam@148: inline ArrayPtr asPtr() { cannam@148: return ArrayPtr(ptr, size_); cannam@148: } cannam@148: inline ArrayPtr asPtr() const { cannam@148: return ArrayPtr(ptr, size_); cannam@148: } cannam@148: cannam@148: inline size_t size() const { return size_; } cannam@148: inline T& operator[](size_t index) const { cannam@148: KJ_IREQUIRE(index < size_, "Out-of-bounds Array access."); cannam@148: return ptr[index]; cannam@148: } cannam@148: cannam@148: inline const T* begin() const { return ptr; } cannam@148: inline const T* end() const { return ptr + size_; } cannam@148: inline const T& front() const { return *ptr; } cannam@148: inline const T& back() const { return *(ptr + size_ - 1); } cannam@148: inline T* begin() { return ptr; } cannam@148: inline T* end() { return ptr + size_; } cannam@148: inline T& front() { return *ptr; } cannam@148: inline T& back() { return *(ptr + size_ - 1); } cannam@148: cannam@148: inline ArrayPtr slice(size_t start, size_t end) { cannam@148: KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); cannam@148: return ArrayPtr(ptr + start, end - start); cannam@148: } cannam@148: inline ArrayPtr slice(size_t start, size_t end) const { cannam@148: KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds Array::slice()."); cannam@148: return ArrayPtr(ptr + start, end - start); cannam@148: } cannam@148: cannam@148: inline ArrayPtr asBytes() const { return asPtr().asBytes(); } cannam@148: inline ArrayPtr> asBytes() { return asPtr().asBytes(); } cannam@148: inline ArrayPtr asChars() const { return asPtr().asChars(); } cannam@148: inline ArrayPtr> asChars() { return asPtr().asChars(); } cannam@148: cannam@148: inline Array> releaseAsBytes() { cannam@148: // Like asBytes() but transfers ownership. cannam@148: static_assert(sizeof(T) == sizeof(byte), cannam@148: "releaseAsBytes() only possible on arrays with byte-size elements (e.g. chars)."); cannam@148: Array> result( cannam@148: reinterpret_cast*>(ptr), size_, *disposer); cannam@148: ptr = nullptr; cannam@148: size_ = 0; cannam@148: return result; cannam@148: } cannam@148: inline Array> releaseAsChars() { cannam@148: // Like asChars() but transfers ownership. cannam@148: static_assert(sizeof(T) == sizeof(PropagateConst), cannam@148: "releaseAsChars() only possible on arrays with char-size elements (e.g. bytes)."); cannam@148: Array> result( cannam@148: reinterpret_cast*>(ptr), size_, *disposer); cannam@148: ptr = nullptr; cannam@148: size_ = 0; cannam@148: return result; cannam@148: } cannam@148: cannam@148: inline bool operator==(decltype(nullptr)) const { return size_ == 0; } cannam@148: inline bool operator!=(decltype(nullptr)) const { return size_ != 0; } cannam@148: cannam@148: inline Array& operator=(decltype(nullptr)) { cannam@148: dispose(); cannam@148: return *this; cannam@148: } cannam@148: cannam@148: inline Array& operator=(Array&& other) { cannam@148: dispose(); cannam@148: ptr = other.ptr; cannam@148: size_ = other.size_; cannam@148: disposer = other.disposer; cannam@148: other.ptr = nullptr; cannam@148: other.size_ = 0; cannam@148: return *this; cannam@148: } cannam@148: cannam@148: private: cannam@148: T* ptr; cannam@148: size_t size_; cannam@148: const ArrayDisposer* disposer; cannam@148: cannam@148: inline void dispose() { cannam@148: // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly cannam@148: // dispose again. cannam@148: T* ptrCopy = ptr; cannam@148: size_t sizeCopy = size_; cannam@148: if (ptrCopy != nullptr) { cannam@148: ptr = nullptr; cannam@148: size_ = 0; cannam@148: disposer->dispose(ptrCopy, sizeCopy, sizeCopy); cannam@148: } cannam@148: } cannam@148: cannam@148: template cannam@148: friend class Array; cannam@148: }; cannam@148: cannam@148: static_assert(!canMemcpy>(), "canMemcpy<>() is broken"); cannam@148: cannam@148: namespace _ { // private cannam@148: cannam@148: class HeapArrayDisposer final: public ArrayDisposer { cannam@148: public: cannam@148: template cannam@148: static T* allocate(size_t count); cannam@148: template cannam@148: static T* allocateUninitialized(size_t count); cannam@148: cannam@148: static const HeapArrayDisposer instance; cannam@148: cannam@148: private: cannam@148: static void* allocateImpl(size_t elementSize, size_t elementCount, size_t capacity, cannam@148: void (*constructElement)(void*), void (*destroyElement)(void*)); cannam@148: // Allocates and constructs the array. Both function pointers are null if the constructor is cannam@148: // trivial, otherwise destroyElement is null if the constructor doesn't throw. cannam@148: cannam@148: virtual void disposeImpl(void* firstElement, size_t elementSize, size_t elementCount, cannam@148: size_t capacity, void (*destroyElement)(void*)) const override; cannam@148: cannam@148: template cannam@148: struct Allocate_; cannam@148: }; cannam@148: cannam@148: } // namespace _ (private) cannam@148: cannam@148: template cannam@148: inline Array heapArray(size_t size) { cannam@148: // Much like `heap()` from memory.h, allocates a new array on the heap. cannam@148: cannam@148: return Array(_::HeapArrayDisposer::allocate(size), size, cannam@148: _::HeapArrayDisposer::instance); cannam@148: } cannam@148: cannam@148: template Array heapArray(const T* content, size_t size); cannam@148: template Array heapArray(ArrayPtr content); cannam@148: template Array heapArray(ArrayPtr content); cannam@148: template Array heapArray(Iterator begin, Iterator end); cannam@148: template Array heapArray(std::initializer_list init); cannam@148: // Allocate a heap array containing a copy of the given content. cannam@148: cannam@148: template cannam@148: Array heapArrayFromIterable(Container&& a) { return heapArray(a.begin(), a.end()); } cannam@148: template cannam@148: Array heapArrayFromIterable(Array&& a) { return mv(a); } cannam@148: cannam@148: // ======================================================================================= cannam@148: // ArrayBuilder cannam@148: cannam@148: template cannam@148: class ArrayBuilder { cannam@148: // Class which lets you build an Array specifying the exact constructor arguments for each cannam@148: // element, rather than starting by default-constructing them. cannam@148: cannam@148: public: cannam@148: ArrayBuilder(): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} cannam@148: ArrayBuilder(decltype(nullptr)): ptr(nullptr), pos(nullptr), endPtr(nullptr) {} cannam@148: explicit ArrayBuilder(RemoveConst* firstElement, size_t capacity, cannam@148: const ArrayDisposer& disposer) cannam@148: : ptr(firstElement), pos(firstElement), endPtr(firstElement + capacity), cannam@148: disposer(&disposer) {} cannam@148: ArrayBuilder(ArrayBuilder&& other) cannam@148: : ptr(other.ptr), pos(other.pos), endPtr(other.endPtr), disposer(other.disposer) { cannam@148: other.ptr = nullptr; cannam@148: other.pos = nullptr; cannam@148: other.endPtr = nullptr; cannam@148: } cannam@148: KJ_DISALLOW_COPY(ArrayBuilder); cannam@148: inline ~ArrayBuilder() noexcept(false) { dispose(); } cannam@148: cannam@148: inline operator ArrayPtr() { cannam@148: return arrayPtr(ptr, pos); cannam@148: } cannam@148: inline operator ArrayPtr() const { cannam@148: return arrayPtr(ptr, pos); cannam@148: } cannam@148: inline ArrayPtr asPtr() { cannam@148: return arrayPtr(ptr, pos); cannam@148: } cannam@148: inline ArrayPtr asPtr() const { cannam@148: return arrayPtr(ptr, pos); cannam@148: } cannam@148: cannam@148: inline size_t size() const { return pos - ptr; } cannam@148: inline size_t capacity() const { return endPtr - ptr; } cannam@148: inline T& operator[](size_t index) const { cannam@148: KJ_IREQUIRE(index < implicitCast(pos - ptr), "Out-of-bounds Array access."); cannam@148: return ptr[index]; cannam@148: } cannam@148: cannam@148: inline const T* begin() const { return ptr; } cannam@148: inline const T* end() const { return pos; } cannam@148: inline const T& front() const { return *ptr; } cannam@148: inline const T& back() const { return *(pos - 1); } cannam@148: inline T* begin() { return ptr; } cannam@148: inline T* end() { return pos; } cannam@148: inline T& front() { return *ptr; } cannam@148: inline T& back() { return *(pos - 1); } cannam@148: cannam@148: ArrayBuilder& operator=(ArrayBuilder&& other) { cannam@148: dispose(); cannam@148: ptr = other.ptr; cannam@148: pos = other.pos; cannam@148: endPtr = other.endPtr; cannam@148: disposer = other.disposer; cannam@148: other.ptr = nullptr; cannam@148: other.pos = nullptr; cannam@148: other.endPtr = nullptr; cannam@148: return *this; cannam@148: } cannam@148: ArrayBuilder& operator=(decltype(nullptr)) { cannam@148: dispose(); cannam@148: return *this; cannam@148: } cannam@148: cannam@148: template cannam@148: T& add(Params&&... params) { cannam@148: KJ_IREQUIRE(pos < endPtr, "Added too many elements to ArrayBuilder."); cannam@148: ctor(*pos, kj::fwd(params)...); cannam@148: return *pos++; cannam@148: } cannam@148: cannam@148: template cannam@148: void addAll(Container&& container) { cannam@148: addAll()>( cannam@148: container.begin(), container.end()); cannam@148: } cannam@148: cannam@148: template cannam@148: void addAll(Iterator start, Iterator end); cannam@148: cannam@148: void removeLast() { cannam@148: KJ_IREQUIRE(pos > ptr, "No elements present to remove."); cannam@148: kj::dtor(*--pos); cannam@148: } cannam@148: cannam@148: void truncate(size_t size) { cannam@148: KJ_IREQUIRE(size <= this->size(), "can't use truncate() to expand"); cannam@148: cannam@148: T* target = ptr + size; cannam@148: if (__has_trivial_destructor(T)) { cannam@148: pos = target; cannam@148: } else { cannam@148: while (pos > target) { cannam@148: kj::dtor(*--pos); cannam@148: } cannam@148: } cannam@148: } cannam@148: cannam@148: void resize(size_t size) { cannam@148: KJ_IREQUIRE(size <= capacity(), "can't resize past capacity"); cannam@148: cannam@148: T* target = ptr + size; cannam@148: if (target > pos) { cannam@148: // expand cannam@148: if (__has_trivial_constructor(T)) { cannam@148: pos = target; cannam@148: } else { cannam@148: while (pos < target) { cannam@148: kj::ctor(*pos++); cannam@148: } cannam@148: } cannam@148: } else { cannam@148: // truncate cannam@148: if (__has_trivial_destructor(T)) { cannam@148: pos = target; cannam@148: } else { cannam@148: while (pos > target) { cannam@148: kj::dtor(*--pos); cannam@148: } cannam@148: } cannam@148: } cannam@148: } cannam@148: cannam@148: Array finish() { cannam@148: // We could safely remove this check if we assume that the disposer implementation doesn't cannam@148: // need to know the original capacity, as is thes case with HeapArrayDisposer since it uses cannam@148: // operator new() or if we created a custom disposer for ArrayBuilder which stores the capacity cannam@148: // in a prefix. But that would make it hard to write cleverer heap allocators, and anyway this cannam@148: // check might catch bugs. Probably people should use Vector if they want to build arrays cannam@148: // without knowing the final size in advance. cannam@148: KJ_IREQUIRE(pos == endPtr, "ArrayBuilder::finish() called prematurely."); cannam@148: Array result(reinterpret_cast(ptr), pos - ptr, *disposer); cannam@148: ptr = nullptr; cannam@148: pos = nullptr; cannam@148: endPtr = nullptr; cannam@148: return result; cannam@148: } cannam@148: cannam@148: inline bool isFull() const { cannam@148: return pos == endPtr; cannam@148: } cannam@148: cannam@148: private: cannam@148: T* ptr; cannam@148: RemoveConst* pos; cannam@148: T* endPtr; cannam@148: const ArrayDisposer* disposer; cannam@148: cannam@148: inline void dispose() { cannam@148: // Make sure that if an exception is thrown, we are left with a null ptr, so we won't possibly cannam@148: // dispose again. cannam@148: T* ptrCopy = ptr; cannam@148: T* posCopy = pos; cannam@148: T* endCopy = endPtr; cannam@148: if (ptrCopy != nullptr) { cannam@148: ptr = nullptr; cannam@148: pos = nullptr; cannam@148: endPtr = nullptr; cannam@148: disposer->dispose(ptrCopy, posCopy - ptrCopy, endCopy - ptrCopy); cannam@148: } cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: inline ArrayBuilder heapArrayBuilder(size_t size) { cannam@148: // Like `heapArray()` but does not default-construct the elements. You must construct them cannam@148: // manually by calling `add()`. cannam@148: cannam@148: return ArrayBuilder(_::HeapArrayDisposer::allocateUninitialized>(size), cannam@148: size, _::HeapArrayDisposer::instance); cannam@148: } cannam@148: cannam@148: // ======================================================================================= cannam@148: // Inline Arrays cannam@148: cannam@148: template cannam@148: class FixedArray { cannam@148: // A fixed-width array whose storage is allocated inline rather than on the heap. cannam@148: cannam@148: public: cannam@148: inline size_t size() const { return fixedSize; } cannam@148: inline T* begin() { return content; } cannam@148: inline T* end() { return content + fixedSize; } cannam@148: inline const T* begin() const { return content; } cannam@148: inline const T* end() const { return content + fixedSize; } cannam@148: cannam@148: inline operator ArrayPtr() { cannam@148: return arrayPtr(content, fixedSize); cannam@148: } cannam@148: inline operator ArrayPtr() const { cannam@148: return arrayPtr(content, fixedSize); cannam@148: } cannam@148: cannam@148: inline T& operator[](size_t index) { return content[index]; } cannam@148: inline const T& operator[](size_t index) const { return content[index]; } cannam@148: cannam@148: private: cannam@148: T content[fixedSize]; cannam@148: }; cannam@148: cannam@148: template cannam@148: class CappedArray { cannam@148: // Like `FixedArray` but can be dynamically resized as long as the size does not exceed the limit cannam@148: // specified by the template parameter. cannam@148: // cannam@148: // TODO(someday): Don't construct elements past currentSize? cannam@148: cannam@148: public: cannam@148: inline KJ_CONSTEXPR() CappedArray(): currentSize(fixedSize) {} cannam@148: inline explicit constexpr CappedArray(size_t s): currentSize(s) {} cannam@148: cannam@148: inline size_t size() const { return currentSize; } cannam@148: inline void setSize(size_t s) { KJ_IREQUIRE(s <= fixedSize); currentSize = s; } cannam@148: inline T* begin() { return content; } cannam@148: inline T* end() { return content + currentSize; } cannam@148: inline const T* begin() const { return content; } cannam@148: inline const T* end() const { return content + currentSize; } cannam@148: cannam@148: inline operator ArrayPtr() { cannam@148: return arrayPtr(content, currentSize); cannam@148: } cannam@148: inline operator ArrayPtr() const { cannam@148: return arrayPtr(content, currentSize); cannam@148: } cannam@148: cannam@148: inline T& operator[](size_t index) { return content[index]; } cannam@148: inline const T& operator[](size_t index) const { return content[index]; } cannam@148: cannam@148: private: cannam@148: size_t currentSize; cannam@148: T content[fixedSize]; cannam@148: }; cannam@148: cannam@148: // ======================================================================================= cannam@148: // KJ_MAP cannam@148: cannam@148: #define KJ_MAP(elementName, array) \ cannam@148: ::kj::_::Mapper(array) * \ cannam@148: [&](typename ::kj::_::Mapper::Element elementName) cannam@148: // Applies some function to every element of an array, returning an Array of the results, with cannam@148: // nice syntax. Example: cannam@148: // cannam@148: // StringPtr foo = "abcd"; cannam@148: // Array bar = KJ_MAP(c, foo) -> char { return c + 1; }; cannam@148: // KJ_ASSERT(str(bar) == "bcde"); cannam@148: cannam@148: namespace _ { // private cannam@148: cannam@148: template cannam@148: struct Mapper { cannam@148: T array; cannam@148: Mapper(T&& array): array(kj::fwd(array)) {} cannam@148: template cannam@148: auto operator*(Func&& func) -> Array { cannam@148: auto builder = heapArrayBuilder(array.size()); cannam@148: for (auto iter = array.begin(); iter != array.end(); ++iter) { cannam@148: builder.add(func(*iter)); cannam@148: } cannam@148: return builder.finish(); cannam@148: } cannam@148: typedef decltype(*kj::instance().begin()) Element; cannam@148: }; cannam@148: cannam@148: template cannam@148: struct Mapper { cannam@148: T* array; cannam@148: Mapper(T* array): array(array) {} cannam@148: template cannam@148: auto operator*(Func&& func) -> Array { cannam@148: auto builder = heapArrayBuilder(s); cannam@148: for (size_t i = 0; i < s; i++) { cannam@148: builder.add(func(array[i])); cannam@148: } cannam@148: return builder.finish(); cannam@148: } cannam@148: typedef decltype(*array)& Element; cannam@148: }; cannam@148: cannam@148: } // namespace _ (private) cannam@148: cannam@148: // ======================================================================================= cannam@148: // Inline implementation details cannam@148: cannam@148: template cannam@148: struct ArrayDisposer::Dispose_ { cannam@148: static void dispose(T* firstElement, size_t elementCount, size_t capacity, cannam@148: const ArrayDisposer& disposer) { cannam@148: disposer.disposeImpl(const_cast*>(firstElement), cannam@148: sizeof(T), elementCount, capacity, nullptr); cannam@148: } cannam@148: }; cannam@148: template cannam@148: struct ArrayDisposer::Dispose_ { cannam@148: static void destruct(void* ptr) { cannam@148: kj::dtor(*reinterpret_cast(ptr)); cannam@148: } cannam@148: cannam@148: static void dispose(T* firstElement, size_t elementCount, size_t capacity, cannam@148: const ArrayDisposer& disposer) { cannam@148: disposer.disposeImpl(firstElement, sizeof(T), elementCount, capacity, &destruct); cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: void ArrayDisposer::dispose(T* firstElement, size_t elementCount, size_t capacity) const { cannam@148: Dispose_::dispose(firstElement, elementCount, capacity, *this); cannam@148: } cannam@148: cannam@148: namespace _ { // private cannam@148: cannam@148: template cannam@148: struct HeapArrayDisposer::Allocate_ { cannam@148: static T* allocate(size_t elementCount, size_t capacity) { cannam@148: return reinterpret_cast(allocateImpl( cannam@148: sizeof(T), elementCount, capacity, nullptr, nullptr)); cannam@148: } cannam@148: }; cannam@148: template cannam@148: struct HeapArrayDisposer::Allocate_ { cannam@148: static void construct(void* ptr) { cannam@148: kj::ctor(*reinterpret_cast(ptr)); cannam@148: } cannam@148: static T* allocate(size_t elementCount, size_t capacity) { cannam@148: return reinterpret_cast(allocateImpl( cannam@148: sizeof(T), elementCount, capacity, &construct, nullptr)); cannam@148: } cannam@148: }; cannam@148: template cannam@148: struct HeapArrayDisposer::Allocate_ { cannam@148: static void construct(void* ptr) { cannam@148: kj::ctor(*reinterpret_cast(ptr)); cannam@148: } cannam@148: static void destruct(void* ptr) { cannam@148: kj::dtor(*reinterpret_cast(ptr)); cannam@148: } cannam@148: static T* allocate(size_t elementCount, size_t capacity) { cannam@148: return reinterpret_cast(allocateImpl( cannam@148: sizeof(T), elementCount, capacity, &construct, &destruct)); cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: T* HeapArrayDisposer::allocate(size_t count) { cannam@148: return Allocate_::allocate(count, count); cannam@148: } cannam@148: cannam@148: template cannam@148: T* HeapArrayDisposer::allocateUninitialized(size_t count) { cannam@148: return Allocate_::allocate(0, count); cannam@148: } cannam@148: cannam@148: template ()> cannam@148: struct CopyConstructArray_; cannam@148: cannam@148: template cannam@148: struct CopyConstructArray_ { cannam@148: static inline T* apply(T* __restrict__ pos, T* start, T* end) { cannam@148: memcpy(pos, start, reinterpret_cast(end) - reinterpret_cast(start)); cannam@148: return pos + (end - start); cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: struct CopyConstructArray_ { cannam@148: static inline T* apply(T* __restrict__ pos, const T* start, const T* end) { cannam@148: memcpy(pos, start, reinterpret_cast(end) - reinterpret_cast(start)); cannam@148: return pos + (end - start); cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: struct CopyConstructArray_ { cannam@148: static inline T* apply(T* __restrict__ pos, Iterator start, Iterator end) { cannam@148: // Since both the copy constructor and assignment operator are trivial, we know that assignment cannam@148: // is equivalent to copy-constructing. So we can make this case somewhat easier for the cannam@148: // compiler to optimize. cannam@148: while (start != end) { cannam@148: *pos++ = *start++; cannam@148: } cannam@148: return pos; cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: struct CopyConstructArray_ { cannam@148: struct ExceptionGuard { cannam@148: T* start; cannam@148: T* pos; cannam@148: inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} cannam@148: ~ExceptionGuard() noexcept(false) { cannam@148: while (pos > start) { cannam@148: dtor(*--pos); cannam@148: } cannam@148: } cannam@148: }; cannam@148: cannam@148: static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { cannam@148: // Verify that T can be *implicitly* constructed from the source values. cannam@148: if (false) implicitCast(*start); cannam@148: cannam@148: if (noexcept(T(*start))) { cannam@148: while (start != end) { cannam@148: ctor(*pos++, *start++); cannam@148: } cannam@148: return pos; cannam@148: } else { cannam@148: // Crap. This is complicated. cannam@148: ExceptionGuard guard(pos); cannam@148: while (start != end) { cannam@148: ctor(*guard.pos, *start++); cannam@148: ++guard.pos; cannam@148: } cannam@148: guard.start = guard.pos; cannam@148: return guard.pos; cannam@148: } cannam@148: } cannam@148: }; cannam@148: cannam@148: template cannam@148: struct CopyConstructArray_ { cannam@148: // Actually move-construct. cannam@148: cannam@148: struct ExceptionGuard { cannam@148: T* start; cannam@148: T* pos; cannam@148: inline explicit ExceptionGuard(T* pos): start(pos), pos(pos) {} cannam@148: ~ExceptionGuard() noexcept(false) { cannam@148: while (pos > start) { cannam@148: dtor(*--pos); cannam@148: } cannam@148: } cannam@148: }; cannam@148: cannam@148: static T* apply(T* __restrict__ pos, Iterator start, Iterator end) { cannam@148: // Verify that T can be *implicitly* constructed from the source values. cannam@148: if (false) implicitCast(kj::mv(*start)); cannam@148: cannam@148: if (noexcept(T(kj::mv(*start)))) { cannam@148: while (start != end) { cannam@148: ctor(*pos++, kj::mv(*start++)); cannam@148: } cannam@148: return pos; cannam@148: } else { cannam@148: // Crap. This is complicated. cannam@148: ExceptionGuard guard(pos); cannam@148: while (start != end) { cannam@148: ctor(*guard.pos, kj::mv(*start++)); cannam@148: ++guard.pos; cannam@148: } cannam@148: guard.start = guard.pos; cannam@148: return guard.pos; cannam@148: } cannam@148: } cannam@148: }; cannam@148: cannam@148: } // namespace _ (private) cannam@148: cannam@148: template cannam@148: template cannam@148: void ArrayBuilder::addAll(Iterator start, Iterator end) { cannam@148: pos = _::CopyConstructArray_, Decay, move>::apply(pos, start, end); cannam@148: } cannam@148: cannam@148: template cannam@148: Array heapArray(const T* content, size_t size) { cannam@148: ArrayBuilder builder = heapArrayBuilder(size); cannam@148: builder.addAll(content, content + size); cannam@148: return builder.finish(); cannam@148: } cannam@148: cannam@148: template cannam@148: Array heapArray(T* content, size_t size) { cannam@148: ArrayBuilder builder = heapArrayBuilder(size); cannam@148: builder.addAll(content, content + size); cannam@148: return builder.finish(); cannam@148: } cannam@148: cannam@148: template cannam@148: Array heapArray(ArrayPtr content) { cannam@148: ArrayBuilder builder = heapArrayBuilder(content.size()); cannam@148: builder.addAll(content); cannam@148: return builder.finish(); cannam@148: } cannam@148: cannam@148: template cannam@148: Array heapArray(ArrayPtr content) { cannam@148: ArrayBuilder builder = heapArrayBuilder(content.size()); cannam@148: builder.addAll(content); cannam@148: return builder.finish(); cannam@148: } cannam@148: cannam@148: template Array cannam@148: heapArray(Iterator begin, Iterator end) { cannam@148: ArrayBuilder builder = heapArrayBuilder(end - begin); cannam@148: builder.addAll(begin, end); cannam@148: return builder.finish(); cannam@148: } cannam@148: cannam@148: template cannam@148: inline Array heapArray(std::initializer_list init) { cannam@148: return heapArray(init.begin(), init.end()); cannam@148: } cannam@148: cannam@148: } // namespace kj cannam@148: cannam@148: #endif // KJ_ARRAY_H_