cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: FFTW 3.3.8: The Halfcomplex-format DFT cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167:
cannam@167:

cannam@167: Next: , Previous: , Up: More DFTs of Real Data   [Contents][Index]

cannam@167:
cannam@167:
cannam@167: cannam@167:

2.5.1 The Halfcomplex-format DFT

cannam@167: cannam@167:

An r2r kind of FFTW_R2HC (r2hc) corresponds to an r2c DFT cannam@167: cannam@167: cannam@167: cannam@167: (see One-Dimensional DFTs of Real Data) but with “halfcomplex” cannam@167: format output, and may sometimes be faster and/or more convenient than cannam@167: the latter. cannam@167: cannam@167: The inverse hc2r transform is of kind FFTW_HC2R. cannam@167: cannam@167: cannam@167: This consists of the non-redundant half of the complex output for a 1d cannam@167: real-input DFT of size n, stored as a sequence of n real cannam@167: numbers (double) in the format: cannam@167:

cannam@167:

cannam@167: r0, r1, r2, ..., rn/2, i(n+1)/2-1, ..., i2, i1 cannam@167:

cannam@167: cannam@167:

Here, cannam@167: rk cannam@167: is the real part of the kth output, and cannam@167: ik cannam@167: is the imaginary part. (Division by 2 is rounded down.) For a cannam@167: halfcomplex array hc[n], the kth component thus has its cannam@167: real part in hc[k] and its imaginary part in hc[n-k], with cannam@167: the exception of k == 0 or n/2 (the latter cannam@167: only if n is even)—in these two cases, the imaginary part is cannam@167: zero due to symmetries of the real-input DFT, and is not stored. cannam@167: Thus, the r2hc transform of n real values is a halfcomplex array of cannam@167: length n, and vice versa for hc2r. cannam@167: cannam@167:

cannam@167: cannam@167:

Aside from the differing format, the output of cannam@167: FFTW_R2HC/FFTW_HC2R is otherwise exactly the same as for cannam@167: the corresponding 1d r2c/c2r transform cannam@167: (i.e. FFTW_FORWARD/FFTW_BACKWARD transforms, respectively). cannam@167: Recall that these transforms are unnormalized, so r2hc followed by hc2r cannam@167: will result in the original data multiplied by n. Furthermore, cannam@167: like the c2r transform, an out-of-place hc2r transform will cannam@167: destroy its input array. cannam@167:

cannam@167:

Although these halfcomplex transforms can be used with the cannam@167: multi-dimensional r2r interface, the interpretation of such a separable cannam@167: product of transforms along each dimension is problematic. For example, cannam@167: consider a two-dimensional n0 by n1, r2hc by r2hc cannam@167: transform planned by fftw_plan_r2r_2d(n0, n1, in, out, FFTW_R2HC, cannam@167: FFTW_R2HC, FFTW_MEASURE). Conceptually, FFTW first transforms the rows cannam@167: (of size n1) to produce halfcomplex rows, and then transforms the cannam@167: columns (of size n0). Half of these column transforms, however, cannam@167: are of imaginary parts, and should therefore be multiplied by i cannam@167: and combined with the r2hc transforms of the real columns to produce the cannam@167: 2d DFT amplitudes; FFTW’s r2r transform does not perform this cannam@167: combination for you. Thus, if a multi-dimensional real-input/output DFT cannam@167: is required, we recommend using the ordinary r2c/c2r cannam@167: interface (see Multi-Dimensional DFTs of Real Data). cannam@167:

cannam@167:
cannam@167:
cannam@167:

cannam@167: Next: , Previous: , Up: More DFTs of Real Data   [Contents][Index]

cannam@167:
cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: