cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: FFTW 3.3.8: Real-data DFT Array Format cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167:
cannam@167:

cannam@167: Next: , Previous: , Up: Basic Interface   [Contents][Index]

cannam@167:
cannam@167:
cannam@167: cannam@167:

4.3.4 Real-data DFT Array Format

cannam@167: cannam@167: cannam@167:

The output of a DFT of real data (r2c) contains symmetries that, in cannam@167: principle, make half of the outputs redundant (see What FFTW Really Computes). (Similarly for the input of an inverse c2r transform.) In cannam@167: practice, it is not possible to entirely realize these savings in an cannam@167: efficient and understandable format that generalizes to cannam@167: multi-dimensional transforms. Instead, the output of the r2c cannam@167: transforms is slightly over half of the output of the cannam@167: corresponding complex transform. We do not “pack” the data in any cannam@167: way, but store it as an ordinary array of fftw_complex values. cannam@167: In fact, this data is simply a subsection of what would be the array in cannam@167: the corresponding complex transform. cannam@167:

cannam@167:

Specifically, for a real transform of d (= rank) cannam@167: dimensions n0 × n1 × n2 × … × nd-1 cannam@167: , the complex data is an n0 × n1 × n2 × … × (nd-1/2 + 1) cannam@167: array of cannam@167: fftw_complex values in row-major order (with the division rounded cannam@167: down). That is, we only store the lower half (non-negative cannam@167: frequencies), plus one element, of the last dimension of the data from cannam@167: the ordinary complex transform. (We could have instead taken half of cannam@167: any other dimension, but implementation turns out to be simpler if the cannam@167: last, contiguous, dimension is used.) cannam@167:

cannam@167: cannam@167:

For an out-of-place transform, the real data is simply an array with cannam@167: physical dimensions n0 × n1 × n2 × … × nd-1 cannam@167: in row-major order. cannam@167:

cannam@167: cannam@167: cannam@167:

For an in-place transform, some complications arise since the complex data cannam@167: is slightly larger than the real data. In this case, the final cannam@167: dimension of the real data must be padded with extra values to cannam@167: accommodate the size of the complex data—two extra if the last cannam@167: dimension is even and one if it is odd. That is, the last dimension of cannam@167: the real data must physically contain cannam@167: 2 * (nd-1/2+1) cannam@167: double values (exactly enough to hold the complex data). This cannam@167: physical array size does not, however, change the logical array cannam@167: size—only cannam@167: nd-1 cannam@167: values are actually stored in the last dimension, and cannam@167: nd-1 cannam@167: is the last dimension passed to the planner. cannam@167:

cannam@167:
cannam@167:
cannam@167:

cannam@167: Next: , Previous: , Up: Basic Interface   [Contents][Index]

cannam@167:
cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: