cannam@167: cannam@167: cannam@167: cannam@167: cannam@167:
cannam@167:cannam@167: Next: MPI Plan Creation, Previous: Using MPI Plans, Up: FFTW MPI Reference [Contents][Index]
cannam@167:As described above (see MPI Data Distribution), in order to
cannam@167: allocate your arrays, before creating a plan, you must first
cannam@167: call one of the following routines to determine the required
cannam@167: allocation size and the portion of the array locally stored on a given
cannam@167: process. The MPI_Comm
communicator passed here must be
cannam@167: equivalent to the communicator used below for plan creation.
cannam@167:
The basic interface for multidimensional transforms consists of the cannam@167: functions: cannam@167:
cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167: cannam@167:ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start); cannam@167: ptrdiff_t fftw_mpi_local_size_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, cannam@167: MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start); cannam@167: ptrdiff_t fftw_mpi_local_size(int rnk, const ptrdiff_t *n, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start); cannam@167: cannam@167: ptrdiff_t fftw_mpi_local_size_2d_transposed(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start, cannam@167: ptrdiff_t *local_n1, ptrdiff_t *local_1_start); cannam@167: ptrdiff_t fftw_mpi_local_size_3d_transposed(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2, cannam@167: MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start, cannam@167: ptrdiff_t *local_n1, ptrdiff_t *local_1_start); cannam@167: ptrdiff_t fftw_mpi_local_size_transposed(int rnk, const ptrdiff_t *n, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start, cannam@167: ptrdiff_t *local_n1, ptrdiff_t *local_1_start); cannam@167:
These functions return the number of elements to allocate (complex
cannam@167: numbers for DFT/r2c/c2r plans, real numbers for r2r plans), whereas
cannam@167: the local_n0
and local_0_start
return the portion
cannam@167: (local_0_start
to local_0_start + local_n0 - 1
) of the
cannam@167: first dimension of an n0 × n1 × n2 × … × nd-1
cannam@167: array that is stored on the local
cannam@167: process. See Basic and advanced distribution interfaces. For
cannam@167: FFTW_MPI_TRANSPOSED_OUT
plans, the ‘_transposed’ variants
cannam@167: are useful in order to also return the local portion of the first
cannam@167: dimension in the n1 × n0 × n2 ×…× nd-1
cannam@167: transposed output.
cannam@167: See Transposed distributions.
cannam@167: The advanced interface for multidimensional transforms is:
cannam@167:
ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t *n, ptrdiff_t howmany, cannam@167: ptrdiff_t block0, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start); cannam@167: ptrdiff_t fftw_mpi_local_size_many_transposed(int rnk, const ptrdiff_t *n, ptrdiff_t howmany, cannam@167: ptrdiff_t block0, ptrdiff_t block1, MPI_Comm comm, cannam@167: ptrdiff_t *local_n0, ptrdiff_t *local_0_start, cannam@167: ptrdiff_t *local_n1, ptrdiff_t *local_1_start); cannam@167:
These differ from the basic interface in only two ways. First, they
cannam@167: allow you to specify block sizes block0
and block1
(the
cannam@167: latter for the transposed output); you can pass
cannam@167: FFTW_MPI_DEFAULT_BLOCK
to use FFTW’s default block size as in
cannam@167: the basic interface. Second, you can pass a howmany
parameter,
cannam@167: corresponding to the advanced planning interface below: this is for
cannam@167: transforms of contiguous howmany
-tuples of numbers
cannam@167: (howmany = 1
in the basic interface).
cannam@167:
The corresponding basic and advanced routines for one-dimensional cannam@167: transforms (currently only complex DFTs) are: cannam@167:
cannam@167: cannam@167: cannam@167:ptrdiff_t fftw_mpi_local_size_1d( cannam@167: ptrdiff_t n0, MPI_Comm comm, int sign, unsigned flags, cannam@167: ptrdiff_t *local_ni, ptrdiff_t *local_i_start, cannam@167: ptrdiff_t *local_no, ptrdiff_t *local_o_start); cannam@167: ptrdiff_t fftw_mpi_local_size_many_1d( cannam@167: ptrdiff_t n0, ptrdiff_t howmany, cannam@167: MPI_Comm comm, int sign, unsigned flags, cannam@167: ptrdiff_t *local_ni, ptrdiff_t *local_i_start, cannam@167: ptrdiff_t *local_no, ptrdiff_t *local_o_start); cannam@167:
As above, the return value is the number of elements to allocate
cannam@167: (complex numbers, for complex DFTs). The local_ni
and
cannam@167: local_i_start
arguments return the portion
cannam@167: (local_i_start
to local_i_start + local_ni - 1
) of the
cannam@167: 1d array that is stored on this process for the transform
cannam@167: input, and local_no
and local_o_start
are the
cannam@167: corresponding quantities for the input. The sign
cannam@167: (FFTW_FORWARD
or FFTW_BACKWARD
) and flags
must
cannam@167: match the arguments passed when creating a plan. Although the inputs
cannam@167: and outputs have different data distributions in general, it is
cannam@167: guaranteed that the output data distribution of an
cannam@167: FFTW_FORWARD
plan will match the input data distribution
cannam@167: of an FFTW_BACKWARD
plan and vice versa; similarly for the
cannam@167: FFTW_MPI_SCRAMBLED_OUT
and FFTW_MPI_SCRAMBLED_IN
flags.
cannam@167: See One-dimensional distributions.
cannam@167:
cannam@167: Next: MPI Plan Creation, Previous: Using MPI Plans, Up: FFTW MPI Reference [Contents][Index]
cannam@167: