cannam@127: /* cannam@127: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@127: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@127: * cannam@127: * This program is free software; you can redistribute it and/or modify cannam@127: * it under the terms of the GNU General Public License as published by cannam@127: * the Free Software Foundation; either version 2 of the License, or cannam@127: * (at your option) any later version. cannam@127: * cannam@127: * This program is distributed in the hope that it will be useful, cannam@127: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@127: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@127: * GNU General Public License for more details. cannam@127: * cannam@127: * You should have received a copy of the GNU General Public License cannam@127: * along with this program; if not, write to the Free Software cannam@127: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@127: * cannam@127: */ cannam@127: cannam@127: cannam@127: /* Do an R{E,O}DFT{01,10} problem via an R2HC problem, with some cannam@127: pre/post-processing ala FFTPACK. */ cannam@127: cannam@127: #include "reodft.h" cannam@127: cannam@127: typedef struct { cannam@127: solver super; cannam@127: } S; cannam@127: cannam@127: typedef struct { cannam@127: plan_rdft super; cannam@127: plan *cld; cannam@127: twid *td; cannam@127: INT is, os; cannam@127: INT n; cannam@127: INT vl; cannam@127: INT ivs, ovs; cannam@127: rdft_kind kind; cannam@127: } P; cannam@127: cannam@127: /* A real-even-01 DFT operates logically on a size-4N array: cannam@127: I 0 -r(I*) -I 0 r(I*), cannam@127: where r denotes reversal and * denotes deletion of the 0th element. cannam@127: To compute the transform of this, we imagine performing a radix-4 cannam@127: (real-input) DIF step, which turns the size-4N DFT into 4 size-N cannam@127: (contiguous) DFTs, two of which are zero and two of which are cannam@127: conjugates. The non-redundant size-N DFT has halfcomplex input, so cannam@127: we can do it with a size-N hc2r transform. (In order to share cannam@127: plans with the re10 (inverse) transform, however, we use the DHT cannam@127: trick to re-express the hc2r problem as r2hc. This has little cost cannam@127: since we are already pre- and post-processing the data in {i,n-i} cannam@127: order.) Finally, we have to write out the data in the correct cannam@127: order...the two size-N redundant (conjugate) hc2r DFTs correspond cannam@127: to the even and odd outputs in O (i.e. the usual interleaved output cannam@127: of DIF transforms); since this data has even symmetry, we only cannam@127: write the first half of it. cannam@127: cannam@127: The real-even-10 DFT is just the reverse of these steps, i.e. a cannam@127: radix-4 DIT transform. There, however, we just use the r2hc cannam@127: transform naturally without resorting to the DHT trick. cannam@127: cannam@127: A real-odd-01 DFT is very similar, except that the input is cannam@127: 0 I (rI)* 0 -I -(rI)*. This format, however, can be transformed cannam@127: into precisely the real-even-01 format above by sending I -> rI cannam@127: and shifting the array by N. The former swap is just another cannam@127: transformation on the input during preprocessing; the latter cannam@127: multiplies the even/odd outputs by i/-i, which combines with cannam@127: the factor of -i (to take the imaginary part) to simply flip cannam@127: the sign of the odd outputs. Vice-versa for real-odd-10. cannam@127: cannam@127: The FFTPACK source code was very helpful in working this out. cannam@127: (They do unnecessary passes over the array, though.) The same cannam@127: algorithm is also described in: cannam@127: cannam@127: John Makhoul, "A fast cosine transform in one and two dimensions," cannam@127: IEEE Trans. on Acoust. Speech and Sig. Proc., ASSP-28 (1), 27--34 (1980). cannam@127: cannam@127: Note that Numerical Recipes suggests a different algorithm that cannam@127: requires more operations and uses trig. functions for both the pre- cannam@127: and post-processing passes. cannam@127: */ cannam@127: cannam@127: static void apply_re01(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT is = ego->is, os = ego->os; cannam@127: INT i, n = ego->n; cannam@127: INT iv, vl = ego->vl; cannam@127: INT ivs = ego->ivs, ovs = ego->ovs; cannam@127: R *W = ego->td->W; cannam@127: R *buf; cannam@127: cannam@127: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@127: cannam@127: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@127: buf[0] = I[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b, apb, amb, wa, wb; cannam@127: a = I[is * i]; cannam@127: b = I[is * (n - i)]; cannam@127: apb = a + b; cannam@127: amb = a - b; cannam@127: wa = W[2*i]; cannam@127: wb = W[2*i + 1]; cannam@127: buf[i] = wa * amb + wb * apb; cannam@127: buf[n - i] = wa * apb - wb * amb; cannam@127: } cannam@127: if (i == n - i) { cannam@127: buf[i] = K(2.0) * I[is * i] * W[2*i]; cannam@127: } cannam@127: cannam@127: { cannam@127: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@127: cld->apply((plan *) cld, buf, buf); cannam@127: } cannam@127: cannam@127: O[0] = buf[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b; cannam@127: INT k; cannam@127: a = buf[i]; cannam@127: b = buf[n - i]; cannam@127: k = i + i; cannam@127: O[os * (k - 1)] = a - b; cannam@127: O[os * k] = a + b; cannam@127: } cannam@127: if (i == n - i) { cannam@127: O[os * (n - 1)] = buf[i]; cannam@127: } cannam@127: } cannam@127: cannam@127: X(ifree)(buf); cannam@127: } cannam@127: cannam@127: /* ro01 is same as re01, but with i <-> n - 1 - i in the input and cannam@127: the sign of the odd output elements flipped. */ cannam@127: static void apply_ro01(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT is = ego->is, os = ego->os; cannam@127: INT i, n = ego->n; cannam@127: INT iv, vl = ego->vl; cannam@127: INT ivs = ego->ivs, ovs = ego->ovs; cannam@127: R *W = ego->td->W; cannam@127: R *buf; cannam@127: cannam@127: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@127: cannam@127: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@127: buf[0] = I[is * (n - 1)]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b, apb, amb, wa, wb; cannam@127: a = I[is * (n - 1 - i)]; cannam@127: b = I[is * (i - 1)]; cannam@127: apb = a + b; cannam@127: amb = a - b; cannam@127: wa = W[2*i]; cannam@127: wb = W[2*i+1]; cannam@127: buf[i] = wa * amb + wb * apb; cannam@127: buf[n - i] = wa * apb - wb * amb; cannam@127: } cannam@127: if (i == n - i) { cannam@127: buf[i] = K(2.0) * I[is * (i - 1)] * W[2*i]; cannam@127: } cannam@127: cannam@127: { cannam@127: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@127: cld->apply((plan *) cld, buf, buf); cannam@127: } cannam@127: cannam@127: O[0] = buf[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b; cannam@127: INT k; cannam@127: a = buf[i]; cannam@127: b = buf[n - i]; cannam@127: k = i + i; cannam@127: O[os * (k - 1)] = b - a; cannam@127: O[os * k] = a + b; cannam@127: } cannam@127: if (i == n - i) { cannam@127: O[os * (n - 1)] = -buf[i]; cannam@127: } cannam@127: } cannam@127: cannam@127: X(ifree)(buf); cannam@127: } cannam@127: cannam@127: static void apply_re10(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT is = ego->is, os = ego->os; cannam@127: INT i, n = ego->n; cannam@127: INT iv, vl = ego->vl; cannam@127: INT ivs = ego->ivs, ovs = ego->ovs; cannam@127: R *W = ego->td->W; cannam@127: R *buf; cannam@127: cannam@127: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@127: cannam@127: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@127: buf[0] = I[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E u, v; cannam@127: INT k = i + i; cannam@127: u = I[is * (k - 1)]; cannam@127: v = I[is * k]; cannam@127: buf[n - i] = u; cannam@127: buf[i] = v; cannam@127: } cannam@127: if (i == n - i) { cannam@127: buf[i] = I[is * (n - 1)]; cannam@127: } cannam@127: cannam@127: { cannam@127: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@127: cld->apply((plan *) cld, buf, buf); cannam@127: } cannam@127: cannam@127: O[0] = K(2.0) * buf[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b, wa, wb; cannam@127: a = K(2.0) * buf[i]; cannam@127: b = K(2.0) * buf[n - i]; cannam@127: wa = W[2*i]; cannam@127: wb = W[2*i + 1]; cannam@127: O[os * i] = wa * a + wb * b; cannam@127: O[os * (n - i)] = wb * a - wa * b; cannam@127: } cannam@127: if (i == n - i) { cannam@127: O[os * i] = K(2.0) * buf[i] * W[2*i]; cannam@127: } cannam@127: } cannam@127: cannam@127: X(ifree)(buf); cannam@127: } cannam@127: cannam@127: /* ro10 is same as re10, but with i <-> n - 1 - i in the output and cannam@127: the sign of the odd input elements flipped. */ cannam@127: static void apply_ro10(const plan *ego_, R *I, R *O) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: INT is = ego->is, os = ego->os; cannam@127: INT i, n = ego->n; cannam@127: INT iv, vl = ego->vl; cannam@127: INT ivs = ego->ivs, ovs = ego->ovs; cannam@127: R *W = ego->td->W; cannam@127: R *buf; cannam@127: cannam@127: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@127: cannam@127: for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) { cannam@127: buf[0] = I[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E u, v; cannam@127: INT k = i + i; cannam@127: u = -I[is * (k - 1)]; cannam@127: v = I[is * k]; cannam@127: buf[n - i] = u; cannam@127: buf[i] = v; cannam@127: } cannam@127: if (i == n - i) { cannam@127: buf[i] = -I[is * (n - 1)]; cannam@127: } cannam@127: cannam@127: { cannam@127: plan_rdft *cld = (plan_rdft *) ego->cld; cannam@127: cld->apply((plan *) cld, buf, buf); cannam@127: } cannam@127: cannam@127: O[os * (n - 1)] = K(2.0) * buf[0]; cannam@127: for (i = 1; i < n - i; ++i) { cannam@127: E a, b, wa, wb; cannam@127: a = K(2.0) * buf[i]; cannam@127: b = K(2.0) * buf[n - i]; cannam@127: wa = W[2*i]; cannam@127: wb = W[2*i + 1]; cannam@127: O[os * (n - 1 - i)] = wa * a + wb * b; cannam@127: O[os * (i - 1)] = wb * a - wa * b; cannam@127: } cannam@127: if (i == n - i) { cannam@127: O[os * (i - 1)] = K(2.0) * buf[i] * W[2*i]; cannam@127: } cannam@127: } cannam@127: cannam@127: X(ifree)(buf); cannam@127: } cannam@127: cannam@127: static void awake(plan *ego_, enum wakefulness wakefulness) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: static const tw_instr reodft010e_tw[] = { cannam@127: { TW_COS, 0, 1 }, cannam@127: { TW_SIN, 0, 1 }, cannam@127: { TW_NEXT, 1, 0 } cannam@127: }; cannam@127: cannam@127: X(plan_awake)(ego->cld, wakefulness); cannam@127: cannam@127: X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, cannam@127: 4*ego->n, 1, ego->n/2+1); cannam@127: } cannam@127: cannam@127: static void destroy(plan *ego_) cannam@127: { cannam@127: P *ego = (P *) ego_; cannam@127: X(plan_destroy_internal)(ego->cld); cannam@127: } cannam@127: cannam@127: static void print(const plan *ego_, printer *p) cannam@127: { cannam@127: const P *ego = (const P *) ego_; cannam@127: p->print(p, "(%se-r2hc-%D%v%(%p%))", cannam@127: X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld); cannam@127: } cannam@127: cannam@127: static int applicable0(const solver *ego_, const problem *p_) cannam@127: { cannam@127: const problem_rdft *p = (const problem_rdft *) p_; cannam@127: UNUSED(ego_); cannam@127: cannam@127: return (1 cannam@127: && p->sz->rnk == 1 cannam@127: && p->vecsz->rnk <= 1 cannam@127: && (p->kind[0] == REDFT01 || p->kind[0] == REDFT10 cannam@127: || p->kind[0] == RODFT01 || p->kind[0] == RODFT10) cannam@127: ); cannam@127: } cannam@127: cannam@127: static int applicable(const solver *ego, const problem *p, const planner *plnr) cannam@127: { cannam@127: return (!NO_SLOWP(plnr) && applicable0(ego, p)); cannam@127: } cannam@127: cannam@127: static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) cannam@127: { cannam@127: P *pln; cannam@127: const problem_rdft *p; cannam@127: plan *cld; cannam@127: R *buf; cannam@127: INT n; cannam@127: opcnt ops; cannam@127: cannam@127: static const plan_adt padt = { cannam@127: X(rdft_solve), awake, print, destroy cannam@127: }; cannam@127: cannam@127: if (!applicable(ego_, p_, plnr)) cannam@127: return (plan *)0; cannam@127: cannam@127: p = (const problem_rdft *) p_; cannam@127: cannam@127: n = p->sz->dims[0].n; cannam@127: buf = (R *) MALLOC(sizeof(R) * n, BUFFERS); cannam@127: cannam@127: cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), cannam@127: X(mktensor_0d)(), cannam@127: buf, buf, R2HC)); cannam@127: X(ifree)(buf); cannam@127: if (!cld) cannam@127: return (plan *)0; cannam@127: cannam@127: switch (p->kind[0]) { cannam@127: case REDFT01: pln = MKPLAN_RDFT(P, &padt, apply_re01); break; cannam@127: case REDFT10: pln = MKPLAN_RDFT(P, &padt, apply_re10); break; cannam@127: case RODFT01: pln = MKPLAN_RDFT(P, &padt, apply_ro01); break; cannam@127: case RODFT10: pln = MKPLAN_RDFT(P, &padt, apply_ro10); break; cannam@127: default: A(0); return (plan*)0; cannam@127: } cannam@127: cannam@127: pln->n = n; cannam@127: pln->is = p->sz->dims[0].is; cannam@127: pln->os = p->sz->dims[0].os; cannam@127: pln->cld = cld; cannam@127: pln->td = 0; cannam@127: pln->kind = p->kind[0]; cannam@127: cannam@127: X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); cannam@127: cannam@127: X(ops_zero)(&ops); cannam@127: ops.other = 4 + (n-1)/2 * 10 + (1 - n % 2) * 5; cannam@127: if (p->kind[0] == REDFT01 || p->kind[0] == RODFT01) { cannam@127: ops.add = (n-1)/2 * 6; cannam@127: ops.mul = (n-1)/2 * 4 + (1 - n % 2) * 2; cannam@127: } cannam@127: else { /* 10 transforms */ cannam@127: ops.add = (n-1)/2 * 2; cannam@127: ops.mul = 1 + (n-1)/2 * 6 + (1 - n % 2) * 2; cannam@127: } cannam@127: cannam@127: X(ops_zero)(&pln->super.super.ops); cannam@127: X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops); cannam@127: X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops); cannam@127: cannam@127: return &(pln->super.super); cannam@127: } cannam@127: cannam@127: /* constructor */ cannam@127: static solver *mksolver(void) cannam@127: { cannam@127: static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; cannam@127: S *slv = MKSOLVER(S, &sadt); cannam@127: return &(slv->super); cannam@127: } cannam@127: cannam@127: void X(reodft010e_r2hc_register)(planner *p) cannam@127: { cannam@127: REGISTER_SOLVER(p, mksolver()); cannam@127: }